論文の概要: Joint Optimization of Neural Autoregressors via Scoring rules
- arxiv url: http://arxiv.org/abs/2601.05683v1
- Date: Fri, 09 Jan 2026 10:05:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-12 17:41:49.939745
- Title: Joint Optimization of Neural Autoregressors via Scoring rules
- Title(参考訳): スコーリングルールによるニューラルオートレグレシタの連成最適化
- Authors: Jonas Landsgesell,
- Abstract要約: Tabular Prior-Data Fitted Network (TabPFN) は様々なベンチマークで最先端の性能を示した。
次元当たり$N$ binsの非パラメトリックな離散化では、明示的なジョイントグリッドの複雑さは指数関数的にスケールする。
- 参考スコア(独自算出の注目度): 0.7877961820015923
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Non-parametric distributional regression has achieved significant milestones in recent years. Among these, the Tabular Prior-Data Fitted Network (TabPFN) has demonstrated state-of-the-art performance on various benchmarks. However, a challenge remains in extending these grid-based approaches to a truly multivariate setting. In a naive non-parametric discretization with $N$ bins per dimension, the complexity of an explicit joint grid scales exponentially and the paramer count of the neural networks rise sharply. This scaling is particularly detrimental in low-data regimes, as the final projection layer would require many parameters, leading to severe overfitting and intractability.
- Abstract(参考訳): 非パラメトリック分布回帰は近年重要なマイルストーンを達成している。
これらのうち、Tabular Prior-Data Fitted Network (TabPFN) は様々なベンチマークで最先端の性能を示している。
しかし、グリッドベースのアプローチを真の多変量設定に拡張する上での課題は残る。
1次元あたり$N$ binsの非パラメトリックな離散化では、明示的なジョイントグリッドの複雑さが指数関数的に拡大し、ニューラルネットワークのパラマー数が急上昇する。
このスケーリングは、最終的なプロジェクション層が多くのパラメータを必要とするため、低データのレシエーションでは特に有害である。
関連論文リスト
- From Overfitting to Reliability: Introducing the Hierarchical Approximate Bayesian Neural Network [3.632251954989679]
HABNNは、ガウス-逆ウィッシュアート分布をネットワークの重みのハイパープライアとして利用する、新しいアプローチである。
その結果、HABNNは適合するだけでなく、しばしば最先端のモデルよりも優れていることが示唆された。
論文 参考訳(メタデータ) (2025-12-15T09:08:42Z) - Closed-Form Last Layer Optimization [72.49151473937319]
正方形損失の下では、線形最終層重みに対する最適解は閉形式で知られている。
これは、バックボーン上の勾配降下ステップと最終層上のクローズドフォーム更新の交互に行われることを示す。
論文 参考訳(メタデータ) (2025-10-06T09:14:39Z) - Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
分散サーバ(DFL)はクライアント・クライアント・アーキテクチャへの依存をなくす。
非滑らかな正規化はしばしば機械学習タスクに組み込まれる。
本稿では,これらの問題を解決する新しいDNCFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-04-17T08:32:25Z) - Covering Numbers for Deep ReLU Networks with Applications to Function Approximation and Nonparametric Regression [4.297070083645049]
我々は、完全連結ネットワークの被覆数に対して、(乗法定数まで)下限と上限を密に展開する。
境界の厳密さにより、疎度、量子化、有界対非有界重み、およびネットワーク出力トランケーションの影響の根本的な理解が展開できる。
論文 参考訳(メタデータ) (2024-10-08T21:23:14Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Generalization Error Bounds for Deep Neural Networks Trained by SGD [3.148524502470734]
勾配降下(SGD)により訓練された深度に対する一般化誤差境界を導出する。
境界は、トレーニング軌跡に沿った損失に明示的に依存する。
その結果、ニューラルネットワークとネットワークハイパースの変化により、境界は非空洞で堅牢であることが判明した。
論文 参考訳(メタデータ) (2022-06-07T13:46:10Z) - A Biased Graph Neural Network Sampler with Near-Optimal Regret [57.70126763759996]
グラフニューラルネットワーク(GNN)は、グラフおよびリレーショナルデータにディープネットワークアーキテクチャを適用する手段として登場した。
本論文では,既存の作業に基づいて,GNN近傍サンプリングをマルチアームバンディット問題として扱う。
そこで本研究では,分散を低減し,不安定かつ非限定的な支払いを回避すべく設計されたバイアスをある程度導入した報酬関数を提案する。
論文 参考訳(メタデータ) (2021-03-01T15:55:58Z) - A Fully Tensorized Recurrent Neural Network [48.50376453324581]
重み付けされたRNNアーキテクチャを導入し、各リカレントセル内の個別の重み付け行列を共同で符号化する。
このアプローチはモデルのサイズを数桁削減するが、通常のRNNと同等あるいは優れた性能を維持している。
論文 参考訳(メタデータ) (2020-10-08T18:24:12Z) - The Heavy-Tail Phenomenon in SGD [7.366405857677226]
最小損失のHessianの構造に依存すると、SGDの反復はエンフェビーテールの定常分布に収束する。
深層学習におけるSGDの行動に関する知見に分析結果を変換する。
論文 参考訳(メタデータ) (2020-06-08T16:43:56Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。