論文の概要: Beyond Accuracy: A Decision-Theoretic Framework for Allocation-Aware Healthcare AI
- arxiv url: http://arxiv.org/abs/2601.06161v1
- Date: Tue, 06 Jan 2026 20:42:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:00.62788
- Title: Beyond Accuracy: A Decision-Theoretic Framework for Allocation-Aware Healthcare AI
- Title(参考訳): 位置認識型医療AIのための決定論的フレームワーク、Beyond Accuracy
- Authors: Rifa Ferzana,
- Abstract要約: 人工知能(AI)システムは、医療において専門家レベルの予測精度をますます達成している。
しかし、モデルパフォーマンスの改善は、患者の結果に対して対応する利益をもたらすことができないことが多い。
本稿では、この割当ギャップを解消し、結合資源制約の下での割当問題として、医療提供をモデル化することで決定論的説明を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial intelligence (AI) systems increasingly achieve expert-level predictive accuracy in healthcare, yet improvements in model performance often fail to produce corresponding gains in patient outcomes. We term this disconnect the allocation gap and provide a decision-theoretic explanation by modelling healthcare delivery as a stochastic allocation problem under binding resource constraints. In this framework, AI acts as decision infrastructure that estimates utility rather than making autonomous decisions. Using constrained optimisation and Markov decision processes, we show how improved estimation affects optimal allocation under scarcity. A synthetic triage simulation demonstrates that allocation-aware policies substantially outperform risk-threshold approaches in realised utility, even with identical predictive accuracy. The framework provides a principled basis for evaluating and deploying healthcare AI in resource-constrained settings.
- Abstract(参考訳): 人工知能(AI)システムは、医療において専門家レベルの予測精度をますます達成している。
本稿では、この割当ギャップを解消し、結合資源制約の下での確率的割当問題として、医療提供をモデル化することで決定論的説明を提供する。
このフレームワークでは、AIは自律的な意思決定ではなく、ユーティリティを見積もる意思決定基盤として機能する。
制約付き最適化とマルコフ決定プロセスを用いて,改良された推定が不足下での最適割り当てにどのように影響するかを示す。
合成トリアージシミュレーションにより、アロケーション・アウェア・ポリシーは、同一の予測精度であっても、現実のユーティリティにおけるリスク・閾値アプローチを大幅に上回ることを示した。
このフレームワークは、リソース制約のある環境で医療AIを評価し、デプロイするための原則化された基盤を提供する。
関連論文リスト
- Balancing Fairness and Performance in Healthcare AI: A Gradient Reconciliation Approach [3.997371369137763]
明示的な公平性を考慮せずにデプロイされたAIシステムは、既存の医療格差を悪化させるリスクを負う。
予測性能とマルチ属性フェアネス最適化のバランスをとる新しい勾配調整フレームワークであるFairGradを提案する。
論文 参考訳(メタデータ) (2025-04-19T19:24:34Z) - Coarse Set Theory for AI Ethics and Decision-Making: A Mathematical Framework for Granular Evaluations [0.0]
粗い倫理 (CE) は、文字のグレードや警告ラベルなどの粗い評価を、認知的および文脈的制約の下で倫理的に適切であるものとして正当化する理論的な枠組みである。
本稿では、完全順序構造と粗い分割を用いた粗粒度決定をモデル化する新しい数学的枠組みである粗粒度集合論(CST)を紹介する。
CSTは集合間の階層的関係を定義し、Kulback-Leibler Divergenceのような情報理論ツールを使用して、単純化と情報損失の間のトレードオフを定量化する。
論文 参考訳(メタデータ) (2025-02-11T08:18:37Z) - Utility-Directed Conformal Prediction: A Decision-Aware Framework for Actionable Uncertainty Quantification [32.93992587758183]
我々は,下流のコスト関数を考慮に入れた予測セットを特定するために,共形予測に基づく手法を開発した。
提案手法は,下流決定とユーザ指定ユーティリティ機能を取り入れつつ,コンフォメーション手法の強みを活用する。
本手法は皮膚疾患の階層構造を効果的に取り入れた医療診断における実世界のユースケースを提案する。
論文 参考訳(メタデータ) (2024-10-02T17:22:09Z) - Stochastic Methods for AUC Optimization subject to AUC-based Fairness
Constraints [51.12047280149546]
公正な予測モデルを得るための直接的なアプローチは、公正な制約の下で予測性能を最適化することでモデルを訓練することである。
フェアネスを考慮した機械学習モデルのトレーニング問題を,AUCに基づくフェアネス制約のクラスを対象とする最適化問題として定式化する。
フェアネス測定値の異なる実世界のデータに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-12-23T22:29:08Z) - Off-Policy Evaluation with Policy-Dependent Optimization Response [90.28758112893054]
我々は,テキスト政治に依存した線形最適化応答を用いた非政治評価のための新しいフレームワークを開発した。
摂動法による政策依存推定のための非バイアス推定器を構築する。
因果介入を最適化するための一般的なアルゴリズムを提供する。
論文 参考訳(メタデータ) (2022-02-25T20:25:37Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
新型コロナウイルス(covid-19)パンデミックのような危機は、医療機関にとって深刻な課題となる。
BaBSim.Hospitalは離散イベントシミュレーションに基づく容量計画ツールである。
BaBSim.Hospitalを改善するためにこれらのパラメータを調査し最適化することを目指しています。
論文 参考訳(メタデータ) (2021-05-16T12:38:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。