論文の概要: LDTC: Lifelong deep temporal clustering for multivariate time series
- arxiv url: http://arxiv.org/abs/2601.06221v1
- Date: Fri, 09 Jan 2026 07:05:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:00.692199
- Title: LDTC: Lifelong deep temporal clustering for multivariate time series
- Title(参考訳): LDTC:多変量時系列のための生涯深部時間クラスタリング
- Authors: Zhi Wang, Yanni Li, Pingping Zheng, Yiyuan Jiao,
- Abstract要約: 本稿では,新しい時間クラスタリングアルゴリズムを提案する。
次元の削減と時間的クラスタリングを、エンドツーエンドの深い教師なし学習フレームワークに統合する。
実験の結果,LDTCは時間的クラスタリング問題を効果的かつ効率的に扱うための有望な方法であることがわかった。
- 参考スコア(独自算出の注目度): 4.919532968978077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering temporal and dynamically changing multivariate time series from real-world fields, called temporal clustering for short, has been a major challenge due to inherent complexities. Although several deep temporal clustering algorithms have demonstrated a strong advantage over traditional methods in terms of model learning and clustering results, the accuracy of the few algorithms are not satisfactory. None of the existing algorithms can continuously learn new tasks and deal with the dynamic data effectively and efficiently in the sequential tasks learning. To bridge the gap and tackle these issues, this paper proposes a novel algorithm \textbf{L}ifelong \textbf{D}eep \textbf{T}emporal \textbf{C}lustering (\textbf{LDTC}), which effectively integrates dimensionality reduction and temporal clustering into an end-to-end deep unsupervised learning framework. Using a specifically designed autoencoder and jointly optimizing for both the latent representation and clustering objective, the LDTC can achieve high-quality clustering results. Moreover, unlike any previous work, the LDTC is uniquely equipped with the fully dynamic model expansion and rehearsal-based techniques to effectively learn new tasks and to tackle the dynamic data in the sequential tasks learning without the catastrophic forgetting or degradation of the model accuracy. Experiments on seven real-world multivariate time series datasets show that the LDTC is a promising method for dealing with temporal clustering issues effectively and efficiently.
- Abstract(参考訳): 時間的および動的に変化する実世界の時間的時系列のクラスタリングは、時間的クラスタリングと呼ばれ、本質的に複雑であるため大きな課題となっている。
いくつかの深い時間的クラスタリングアルゴリズムは、モデル学習とクラスタリングの結果の点で従来の手法よりも強い優位性を示しているが、少数のアルゴリズムの精度は十分ではない。
既存のアルゴリズムは、新しいタスクを継続的に学習せず、シーケンシャルなタスク学習において、動的データを効果的に、効率的に処理することができる。
このギャップを埋めてこれらの課題に対処するために,新しいアルゴリズムである \textbf{L}ifelong \textbf{D}eep \textbf{T}emporal \textbf{C}lustering (\textbf{LDTC})を提案する。
特別に設計されたオートエンコーダを用いて、潜在表現とクラスタリングの両方を共同最適化することにより、LDTCは高品質なクラスタリング結果が得られる。
さらに,従来の作業と異なり,LDTCは,新たなタスクを効果的に学習し,モデル精度の破滅的な忘れや劣化を伴わずに,シーケンシャルなタスク学習における動的データに取り組むために,完全にダイナミックなモデル展開とリハーサルベースの手法を独自に備えている。
7つの実世界の多変量時系列データセットの実験は、LDTCが時間的クラスタリング問題に効果的かつ効率的に対処するための有望な方法であることを示している。
関連論文リスト
- FusAD: Time-Frequency Fusion with Adaptive Denoising for General Time Series Analysis [92.23551599659186]
時系列分析は、金融、医療、産業、気象学などの分野において重要な役割を果たす。
FusADは多様な時系列タスク用に設計された統合分析フレームワークである。
論文 参考訳(メタデータ) (2025-12-16T04:34:27Z) - Fuzzy Cluster-Aware Contrastive Clustering for Time Series [1.435214708535728]
従来の教師なしクラスタリング手法は、しばしば時系列データの複雑な性質を捉えるのに失敗する。
本稿では,表現学習とクラスタリングを協調的に最適化するファジィクラスタ対応コントラストクラスタリングフレームワーク(FCACC)を提案する。
本稿では,時系列データの様々な特徴を活用して特徴抽出を強化するために,新しい3視点データ拡張手法を提案する。
論文 参考訳(メタデータ) (2025-03-28T07:59:23Z) - Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
時系列クラスタリングは、時間的パターンを発見するためのデータ分析において基本である。
深部時間クラスタリング手法は、ニューラルネットワークのエンドツーエンドトレーニングに標準k平均を組み込もうとしている。
LoSTerは、時系列クラスタリング問題に対する新しい密集型オートエンコーダアーキテクチャである。
論文 参考訳(メタデータ) (2024-05-08T12:31:35Z) - Deep Ensembles Meets Quantile Regression: Uncertainty-aware Imputation for Time Series [45.76310830281876]
量子回帰に基づくタスクネットワークのアンサンブルを用いて不確実性を推定する新しい手法であるQuantile Sub-Ensemblesを提案する。
提案手法は,高い損失率に頑健な高精度な計算法を生成するだけでなく,非生成モデルの高速な学習により,計算効率も向上する。
論文 参考訳(メタデータ) (2023-12-03T05:52:30Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
大規模未ラベルデータから学ぶための2つの戦略を提案する。
第1の戦略は、近傍関係に違反することなく、それぞれのデータセットサイズを減らすために、局所的な近傍サンプリングを行う。
第2の戦略は、低時間上限の複雑さを持ち、メモリの複雑さを O(n2) から O(kn) に k n で還元する新しい再帰的手法を利用する。
論文 参考訳(メタデータ) (2023-07-26T16:19:19Z) - Deep Spatiotemporal Clustering: A Temporal Clustering Approach for
Multi-dimensional Climate Data [0.353122873734926]
教師なし深層学習法を用いて,データの高次元時間表現のための新しいアルゴリズムを提案する。
U-netアーキテクチャにインスパイアされたアルゴリズムでは,CNN-RNN層を統合したオートエンコーダを用いて潜在表現を学習する。
実験の結果,従来のクラスタリングアルゴリズムと深層学習に基づくクラスタリングアルゴリズムのどちらよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-27T21:45:21Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
我々は,100以上の視覚的分類タスクのストリームからなるベンチマークであるNever-Ending VIsual-classification Stream (NEVIS'22)を紹介する。
分類に制限されているにもかかわらず、OCR、テクスチャ分析、シーン認識など、様々なタスクが生成される。
NEVIS'22は、タスクの規模と多様性のために、現在のシーケンシャルな学習アプローチに対して前例のない課題を提起している。
論文 参考訳(メタデータ) (2022-11-15T18:57:46Z) - Continual Learning Beyond a Single Model [28.130513524601145]
そこで本研究では,アンサンブルモデルを用いることで,連続的な性能向上を図った。
本稿では,単一モデルに類似した実行時間を持つ計算コストの低いアルゴリズムを提案し,アンサンブルの性能上の利点を享受する。
論文 参考訳(メタデータ) (2022-02-20T14:30:39Z) - Deep Efficient Continuous Manifold Learning for Time Series Modeling [11.876985348588477]
対称正定値行列はコンピュータビジョン、信号処理、医療画像解析において研究されている。
本稿では,リーマン多様体とコレスキー空間の間の微分同相写像を利用する枠組みを提案する。
時系列データの動的モデリングのために,多様体常微分方程式とゲートリカレントニューラルネットワークを体系的に統合した連続多様体学習法を提案する。
論文 参考訳(メタデータ) (2021-12-03T01:38:38Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。