論文の概要: Deep Efficient Continuous Manifold Learning for Time Series Modeling
- arxiv url: http://arxiv.org/abs/2112.03379v2
- Date: Fri, 6 Oct 2023 00:44:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 17:24:07.198443
- Title: Deep Efficient Continuous Manifold Learning for Time Series Modeling
- Title(参考訳): 時系列モデリングのための高効率連続多様体学習
- Authors: Seungwoo Jeong, Wonjun Ko, Ahmad Wisnu Mulyadi, Heung-Il Suk
- Abstract要約: 対称正定値行列はコンピュータビジョン、信号処理、医療画像解析において研究されている。
本稿では,リーマン多様体とコレスキー空間の間の微分同相写像を利用する枠組みを提案する。
時系列データの動的モデリングのために,多様体常微分方程式とゲートリカレントニューラルネットワークを体系的に統合した連続多様体学習法を提案する。
- 参考スコア(独自算出の注目度): 11.876985348588477
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling non-Euclidean data is drawing extensive attention along with the
unprecedented successes of deep neural networks in diverse fields.
Particularly, a symmetric positive definite matrix is being actively studied in
computer vision, signal processing, and medical image analysis, due to its
ability to learn beneficial statistical representations. However, owing to its
rigid constraints, it remains challenging to optimization problems and
inefficient computational costs, especially, when incorporating it with a deep
learning framework. In this paper, we propose a framework to exploit a
diffeomorphism mapping between Riemannian manifolds and a Cholesky space, by
which it becomes feasible not only to efficiently solve optimization problems
but also to greatly reduce computation costs. Further, for dynamic modeling of
time-series data, we devise a continuous manifold learning method by
systematically integrating a manifold ordinary differential equation and a
gated recurrent neural network. It is worth noting that due to the nice
parameterization of matrices in a Cholesky space, training our proposed network
equipped with Riemannian geometric metrics is straightforward. We demonstrate
through experiments over regular and irregular time-series datasets that our
proposed model can be efficiently and reliably trained and outperforms existing
manifold methods and state-of-the-art methods in various time-series tasks.
- Abstract(参考訳): 非ユークリッドデータのモデリングは、さまざまな分野におけるディープニューラルネットワークの成功と共に、広く注目を集めている。
特に、有益な統計的表現を学習する能力のため、コンピュータビジョン、信号処理、医用画像解析において対称正定値行列が積極的に研究されている。
しかしながら、厳格な制約のため、特にディープラーニングフレームワークに組み込む場合、最適化の問題や非効率な計算コストは依然として困難である。
本稿では,リーマン多様体とコレスキー空間の微分同相写像を利用する枠組みを提案し,最適化問題を効率的に解くだけでなく,計算コストを大幅に削減することが可能になる。
さらに,時系列データの動的モデリングのために,多様体常微分方程式とゲートリカレントニューラルネットワークを体系的に統合して連続多様体学習法を考案する。
チョーレスキー空間における行列のよいパラメータ化のため、リーマン幾何学的測度を備えた提案されたネットワークを訓練することは簡単である。
提案手法は, 各種時系列タスクにおいて, 既存の多様体法や最先端手法を効率よく, 確実に訓練し, 性能を向上できることを示す。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Invertible Solution of Neural Differential Equations for Analysis of
Irregularly-Sampled Time Series [4.14360329494344]
本稿では,不規則な時系列データと不完全時系列データの複雑度を扱うために,ニューラル微分方程式(NDE)に基づく非可逆解を提案する。
計算負荷を低く抑えながら可逆性を確保するニューラルフローを用いたニューラル制御微分方程式(Neural Controlled Differential Equations, ニューラルCDE)の変動について提案する。
我々のアプローチの核となるのは拡張された二重潜在状態アーキテクチャであり、様々な時系列タスクにおいて高精度に設計されている。
論文 参考訳(メタデータ) (2024-01-10T07:51:02Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
提案手法は,ディープラーニングと数値最適化アルゴリズムを統合し,行列構造を推論し,数値最適化を導出する。
大規模合成データセットを用いて,提案手法の優れた一般化性能を実証するために実験を行った。
論文 参考訳(メタデータ) (2023-10-09T14:30:06Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
本研究では,時間依存型PDEシミュレーションにおけるグラフニューラルネットワーク(GNN)の可能性について検討する。
本稿では,データ駆動型タイムステッピング方式に基づくサロゲートモデルを構築するための体系的戦略を提案する。
GNNは,計算効率と新たなシナリオへの一般化の観点から,従来の代理モデルに代わる有効な代替手段を提供することができることを示す。
論文 参考訳(メタデータ) (2023-08-03T08:14:28Z) - MMGP: a Mesh Morphing Gaussian Process-based machine learning method for
regression of physical problems under non-parameterized geometrical
variability [0.30693357740321775]
本稿では,グラフニューラルネットワークに依存しない機械学習手法を提案する。
提案手法は, 明示的な形状パラメータ化を必要とせずに, 大きなメッシュを容易に扱うことができる。
論文 参考訳(メタデータ) (2023-05-22T09:50:15Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Learning Time-Varying Graphs from Online Data [39.21234914444073]
本研究では,オンラインデータから時間変化グラフを学習するアルゴリズムフレームワークを提案する。
モデルに依存しない、すなわち抽象的な定式化において理論的に解析することができる。
フレームワークを3つのよく知られたグラフ学習モデル、すなわちガウス図形モデル(GGM)、構造方程式モデル(SEM)、滑らか性に基づくモデル(SBM)に特化する。
論文 参考訳(メタデータ) (2021-10-21T09:46:44Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。