論文の概要: Dimension-reduced outcome-weighted learning for estimating individualized treatment regimes in observational studies
- arxiv url: http://arxiv.org/abs/2601.06782v1
- Date: Sun, 11 Jan 2026 05:38:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-13 19:08:00.981966
- Title: Dimension-reduced outcome-weighted learning for estimating individualized treatment regimes in observational studies
- Title(参考訳): 観察研究における個別治療体制の推定のための次元還元結果重み付き学習
- Authors: Sungtaek Son, Eardi Lila, Kwun Chuen Gary Chan,
- Abstract要約: 個別治療体制(ITR)は、患者固有の特徴に基づいて治療を割り当てることにより、臨床結果を改善することを目的としている。
本稿では,潜在的結果のコントラストを目標とし,低次元部分空間を同定する,新しい十分次元削減手法を提案する。
提案手法は,緩やかな規則性条件下で,ベイズリスクに収束する普遍的整合性を実現することを示す。
- 参考スコア(独自算出の注目度): 1.338174941551702
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Individualized treatment regimes (ITRs) aim to improve clinical outcomes by assigning treatment based on patient-specific characteristics. However, existing methods often struggle with high-dimensional covariates, limiting accuracy, interpretability, and real-world applicability. We propose a novel sufficient dimension reduction approach that directly targets the contrast between potential outcomes and identifies a low-dimensional subspace of the covariates capturing treatment effect heterogeneity. This reduced representation enables more accurate estimation of optimal ITRs through outcome-weighted learning. To accommodate observational data, our method incorporates kernel-based covariate balancing, allowing treatment assignment to depend on the full covariate set and avoiding the restrictive assumption that the subspace sufficient for modeling heterogeneous treatment effects is also sufficient for confounding adjustment. We show that the proposed method achieves universal consistency, i.e., its risk converges to the Bayes risk, under mild regularity conditions. We demonstrate its finite sample performance through simulations and an analysis of intensive care unit sepsis patient data to determine who should receive transthoracic echocardiography.
- Abstract(参考訳): 個別治療体制(ITR)は、患者固有の特徴に基づいて治療を割り当てることにより、臨床結果を改善することを目的としている。
しかし、既存の手法は、しばしば高次元の共変量、精度の制限、解釈可能性、現実の応用性に苦しむ。
本稿では, 潜在的結果のコントラストを直接対象とし, 共変量捕捉処理効果の不均一性の低次元部分空間を同定する, 十分次元削減手法を提案する。
この縮小された表現は、結果重み付け学習による最適ITRのより正確な推定を可能にする。
観察データに対応するため,カーネルベースの共変量バランスを導入し,全共変量集合に依存する処理割り当てを可能とし,不均一な処理効果をモデル化するのに十分な部分空間が整合化に十分であるという制約的仮定を回避する。
提案手法は,緩やかな規則性条件下で,ベイズリスクに収束する普遍的整合性を実現することを示す。
本研究は, 経胸壁心エコー図の受信者を決定するため, シミュレーションおよび集中治療単位敗血症患者データの解析を通じて, その有限標本性能を実証する。
関連論文リスト
- Overlap-weighted orthogonal meta-learner for treatment effect estimation over time [90.46786193198744]
ヘテロジニアス治療効果(HTE)を推定するための新しい重み付きメタラーナーを提案する。
我々のWO-Larnerは、ノイマン直交性(Neyman-orthogonality)の好ましい性質を持ち、ニュアンス関数の誤特定に対して堅牢である。
我々のWO-learnerは完全にモデルに依存しず、あらゆる機械学習モデルに適用可能であることを示す。
論文 参考訳(メタデータ) (2025-10-22T14:47:57Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
反応曲線の非パラメトリックモデリングは、共有された隠れニューロンを持つ放射基底関数(RBF)-ネットに依存している。
本手法をMIMICデータに適用し, 在宅中絶患者に対するICU滞在時間と12時間SOFAスコアに対する異なる治療方法の効果に関する興味深い知見を得た。
論文 参考訳(メタデータ) (2024-01-29T21:13:01Z) - Adversarially Balanced Representation for Continuous Treatment Effect
Estimation [6.469020202994118]
本稿では,この処理が連続変数である,より実践的で困難なシナリオについて考察する。
本稿では,KL分散の表現の不均衡を対角的に最小化する対向反事実回帰ネットワーク(ACFR)を提案する。
半合成データセットに対する実験的な評価は、ACFRの最先端手法に対する経験的優位性を実証するものである。
論文 参考訳(メタデータ) (2023-12-17T00:46:16Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
本研究では, 平均治療効果, 平均治療効果の両面から, 新規な1段階, 目標最小損失ベース推定装置を開発した。
我々の推定器は観測されたデータ分布のパラメータ化に基づいて構築され、メディエータ密度を完全に回避するアプローチを含む。
因果効果推定器の効率を向上させるためにこれらの制約をどのように活用できるかを示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Estimating treatment effects from single-arm trials via latent-variable
modeling [14.083487062917085]
すべての患者が治療グループに属しているシングルアーム臨床試験は、有効な代替手段であるが、外部コントロールグループへのアクセスが必要である。
このシナリオに対して、同定可能なディープ潜在変数モデルを提案する。
その結果, 直接治療効果評価と患者マッチングによる効果評価の両面で, 性能が向上した。
論文 参考訳(メタデータ) (2023-11-06T10:12:54Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
ランダム化制御試験(RCT)における治療効果の客観的評価における中心的な障害は、その性能をテストするための基礎的真理(または検証セット)の欠如である。
この課題に対処するための新しいクロスバリデーションのような方法論を提供する。
本手法は,Amazonサプライチェーンに実装された709RCTに対して評価を行った。
論文 参考訳(メタデータ) (2021-12-14T17:53:01Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z) - Estimating heterogeneous survival treatment effect in observational data
using machine learning [9.951103976634407]
観測データにおける不均一な処理効果を推定する方法は, 連続的あるいは二分的な結果に大きく焦点を絞っている。
対物的フレームワークで柔軟な機械学習手法を使用することは、複雑な個人特性による課題に対処するための有望なアプローチである。
論文 参考訳(メタデータ) (2020-08-17T01:02:14Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。