論文の概要: Automatic debiased machine learning and sensitivity analysis for sample selection models
- arxiv url: http://arxiv.org/abs/2601.08643v1
- Date: Tue, 13 Jan 2026 15:15:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-14 18:27:19.255677
- Title: Automatic debiased machine learning and sensitivity analysis for sample selection models
- Title(参考訳): サンプル選択モデルに対する自動脱バイアス機械学習と感度解析
- Authors: Jakob Bjelac, Victor Chernozhukov, Phil-Adrian Klotz, Jannis Kueck, Theresa M. A. Schmitz,
- Abstract要約: 我々は、Riesz表現フレームワークをサンプル選択の下で因果推論に拡張する。
推定にはフォレストリース推定器を用いる。
フォレストリースの手法は、標準的なダブル機械学習手法よりも処理効果の見積もりが大きいことが判明した。
- 参考スコア(独自算出の注目度): 1.666999595041844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we extend the Riesz representation framework to causal inference under sample selection, where both treatment assignment and outcome observability are non-random. Formulating the problem in terms of a Riesz representer enables stable estimation and a transparent decomposition of omitted variable bias into three interpretable components: a data-identified scale factor, outcome confounding strength, and selection confounding strength. For estimation, we employ the ForestRiesz estimator, which accounts for selective outcome observability while avoiding the instability associated with direct propensity score inversion. We assess finite-sample performance through a simulation study and show that conventional double machine learning approaches can be highly sensitive to tuning parameters due to their reliance on inverse probability weighting, whereas the ForestRiesz estimator delivers more stable performance by leveraging automatic debiased machine learning. In an empirical application to the gender wage gap in the U.S., we find that our ForestRiesz approach yields larger treatment effect estimates than a standard double machine learning approach, suggesting that ignoring sample selection leads to an underestimation of the gender wage gap. Sensitivity analysis indicates that implausibly strong unobserved confounding would be required to overturn our results. Overall, our approach provides a unified, robust, and computationally attractive framework for causal inference under sample selection.
- Abstract(参考訳): 本稿では、Riesz表現フレームワークをサンプル選択時の因果推論に拡張し、処理の割り当てと結果の可観測性の両方が非ランダムであることを示す。
Riesz表現器を用いて問題を定式化することで、省略変数バイアスの安定な推定と透過的な分解を3つの解釈可能なコンポーネント(データ同定スケールファクタ、結果共起強度、選択共起強度)にすることができる。
推定にはフォレストリース推定器を用いており、これは直接確率スコアの逆転に伴う不安定さを回避しつつ、選択的な結果の可観測性を考慮している。
シミュレーションによる有限サンプル性能の評価を行い、従来の2重機械学習手法は逆確率重み付けに依存するため、パラメータのチューニングに非常に敏感であることを示し、一方フォレストリース推定器は自動デバイアス機械学習を利用してより安定した性能を提供する。
米国におけるジェンダー賃金格差に対する実証的な応用として、フォレストリースのアプローチは、標準的なダブル機械学習アプローチよりも大きな治療効果の見積が得られ、サンプル選択を無視したことが男女賃金格差の過小評価につながることを示唆している。
感度分析は、我々の結果を覆すためには、信じられないほど強い観測不能な共起が必要であることを示唆している。
全体として、本手法は、サンプル選択の下で因果推論のための統一的で堅牢で、計算に魅力的なフレームワークを提供する。
関連論文リスト
- Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
我々は、RAGモデルの予測が誤りであり、現実のアプリケーションにおいて制御不能なリスクをもたらす可能性がどの程度あるかに焦点を当てる。
本研究は,RAGの予測に影響を及ぼす2つの重要な潜伏要因を明らかにする。
我々は,これらの要因をモデルに誘導し,その応答に与える影響を解析する,反実的プロンプトフレームワークを開発した。
論文 参考訳(メタデータ) (2024-09-24T14:52:14Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
本研究では、無限水平マルコフ決定過程の文脈における高信頼オフ政治評価について検討する。
目的は、未知の行動ポリシーから事前に収集されたオフラインデータのみを用いて、対象の政策値に対する信頼区間(CI)を確立することである。
提案アルゴリズムは, 非線形関数近似設定においても, サンプル効率, 誤差ローバスト, 既知収束性を示す。
論文 参考訳(メタデータ) (2023-09-23T06:35:44Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
同定精度を高めるため,有効バイアス強調スコアリング法(ECS)を提案する。
また, マイニングされたバイアスアライメントとバイアスコンプリケート試料のコントリビューションのバランスをとるために, 勾配アライメント(GA)を提案する。
様々な環境で複数のデータセットで実験を行い、提案されたソリューションが未知のバイアスの影響を軽減することを実証した。
論文 参考訳(メタデータ) (2023-02-22T14:50:24Z) - Distributionally Robust Causal Inference with Observational Data [4.8986598953553555]
非確立性の標準的な仮定を伴わない観察研究における平均治療効果の推定を考察する。
本稿では,無観測の共同設立者が存在する可能性を考慮した,一般的な観察研究環境下での堅牢な因果推論の枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-15T16:02:33Z) - Selective Regression Under Fairness Criteria [30.672082160544996]
少数派集団のパフォーマンスは、カバー範囲を減らしながら低下する場合もある。
満足度基準を満たす特徴を構築できれば、そのような望ましくない行動は避けられることを示す。
論文 参考訳(メタデータ) (2021-10-28T19:05:12Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - The Hidden Uncertainty in a Neural Networks Activations [105.4223982696279]
ニューラルネットワークの潜在表現の分布は、アウト・オブ・ディストリビューション(OOD)データの検出に成功している。
本研究は、この分布が、モデルの不確実性と相関しているかどうかを考察し、新しい入力に一般化する能力を示す。
論文 参考訳(メタデータ) (2020-12-05T17:30:35Z) - Double machine learning for sample selection models [0.12891210250935145]
本稿では,サンプル選択や帰属によるサブポピュレーションに対してのみ結果が観察される場合の個別分散処理の評価について考察する。
a)Neyman-orthogonal, Duubly robust, and efficient score function, which suggests the robustness of treatment effect Estimation to moderate regularization biases in the machine learning based Estimation of the outcome, treatment, or sample selection model and (b) sample splitting ( or cross-fitting) to prevent overfitting bias。
論文 参考訳(メタデータ) (2020-11-30T19:40:21Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
本稿では、現在のランダム化平滑化による副作用を指摘する。
具体的には,1)スムーズな分類器の決定境界が小さくなり,クラスレベルでの精度の相違が生じること,2)学習過程における雑音増強の適用は,一貫性のない学習目的による縮小問題を必ずしも解決しない,という2つの主要なポイントを具体化し,証明する。
論文 参考訳(メタデータ) (2020-03-02T23:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。