論文の概要: Optimising for Energy Efficiency and Performance in Machine Learning
- arxiv url: http://arxiv.org/abs/2601.08991v1
- Date: Tue, 13 Jan 2026 21:28:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.172419
- Title: Optimising for Energy Efficiency and Performance in Machine Learning
- Title(参考訳): 機械学習におけるエネルギー効率と性能の最適化
- Authors: Emile Dos Santos Ferreira, Neil D. Lawrence, Andrei Paleyes,
- Abstract要約: エネルギー消費オプティマイザ(ECOpt)はエネルギー効率とモデル性能を最適化することを示す。
ECOptは、これらのメトリクス間のトレードオフを解釈可能なフロンティアとして定量化する。
ECOpt の環境影響は,CIFAR-10 の 7 つのモデルを明らかにするのに有効であることを示す。
- 参考スコア(独自算出の注目度): 3.8803432012641395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ubiquity of machine learning (ML) and the demand for ever-larger models bring an increase in energy consumption and environmental impact. However, little is known about the energy scaling laws in ML, and existing research focuses on training cost -- ignoring the larger cost of inference. Furthermore, tools for measuring the energy consumption of ML do not provide actionable feedback. To address these gaps, we developed Energy Consumption Optimiser (ECOpt): a hyperparameter tuner that optimises for energy efficiency and model performance. ECOpt quantifies the trade-off between these metrics as an interpretable Pareto frontier. This enables ML practitioners to make informed decisions about energy cost and environmental impact, while maximising the benefit of their models and complying with new regulations. Using ECOpt, we show that parameter and floating-point operation counts can be unreliable proxies for energy consumption, and observe that the energy efficiency of Transformer models for text generation is relatively consistent across hardware. These findings motivate measuring and publishing the energy metrics of ML models. We further show that ECOpt can have a net positive environmental impact and use it to uncover seven models for CIFAR-10 that improve upon the state of the art, when considering accuracy and energy efficiency together.
- Abstract(参考訳): 機械学習(ML)の普及と、より大規模なモデルへの需要は、エネルギー消費と環境への影響を増大させる。
しかし、MLのエネルギースケーリング法則についてはほとんど知られておらず、既存の研究は、推論のコストが大きいことを無視して、トレーニングコストに焦点を当てている。
さらに、MLのエネルギー消費を測定するツールは、実用的なフィードバックを提供していない。
これらのギャップに対処するため,エネルギー効率とモデル性能を最適化するハイパーパラメータチューナであるEnergy Consumption Optimiser (ECOpt)を開発した。
ECOptは、これらのメトリクス間のトレードオフを解釈可能なParetoフロンティアとして定量化する。
これにより、ML実践者は、エネルギーコストと環境影響に関する情報的な決定をすることができると同時に、モデルの利点を最大化し、新しい規則に従うことができる。
ECOptを用いて、パラメータと浮動小数点演算数はエネルギー消費の信頼できないプロキシとなり得ることを示し、テキスト生成のためのTransformerモデルのエネルギー効率は、ハードウェア間で比較的一定であることを示した。
これらの知見は,MLモデルのエネルギー指標の測定と公開を動機付けている。
さらに,ECOpt は環境影響に正の影響を及ぼす可能性を示し,CIFAR-10 の7つのモデルを明らかにし,精度とエネルギー効率の両立を考慮した。
関連論文リスト
- Comparing energy consumption and accuracy in text classification inference [0.9208007322096533]
本研究は,テキスト分類推定におけるモデル精度とエネルギー消費のトレードオフを系統的に評価する。
精度の点で最高の性能モデルはエネルギー効率も良いが、より大きなLCMはより低い分類精度ではるかに多くのエネルギーを消費する傾向がある。
論文 参考訳(メタデータ) (2025-08-19T18:00:08Z) - A Reinforcement Learning Approach for Optimal Control in Microgrids [43.122212629962235]
マイクログリッドは、エネルギー発生、貯蔵、分散に対する局所的な制御を可能にすることで、有望なソリューションを提供する。
本稿では,マイクログリッドエネルギー管理を最適化するための新しい強化学習手法を提案する。
論文 参考訳(メタデータ) (2025-06-28T20:10:00Z) - Green MLOps to Green GenOps: An Empirical Study of Energy Consumption in Discriminative and Generative AI Operations [2.2765705959685234]
本研究では,実世界のMLOpsパイプラインにおける識別型および生成型AIモデルのエネルギー消費について検討する。
さまざまな構成、モデル、データセットにわたるレプリケーションの容易性を保証するために、ソフトウェアベースのパワー測定を採用しています。
論文 参考訳(メタデータ) (2025-03-31T10:28:04Z) - Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations [45.243401722182554]
大規模言語モデル(LLM)は、パフォーマンスとエネルギー効率の最適化を開発者が支援すると主張している。
この研究は、科学と工学の応用のために学術と産業の両方で広く使われているマットラブで書かれたソフトウェアに焦点を当てている。
トップ100のGitHubリポジトリで400スクリプトのエネルギ中心の最適化を分析します。
論文 参考訳(メタデータ) (2025-03-26T00:27:29Z) - Investigating Energy Efficiency and Performance Trade-offs in LLM Inference Across Tasks and DVFS Settings [1.781045155774463]
大規模言語モデル(LLM)は、幅広い自然言語処理(NLP)タスクにおいて顕著な性能を示した。
しかしながら、彼らの推論ワークロードは計算的かつエネルギー集約的であり、持続可能性や環境への影響に関する懸念を提起している。
論文 参考訳(メタデータ) (2025-01-14T16:02:33Z) - Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
本研究の目的は,画像分類データセットと事前学習モデルの解析,最適化モデルと非最適化モデルを比較して推論効率を向上させること,最適化の経済的影響を評価することである。
画像分類におけるPyTorch最適化手法(動的量子化、トーチ・コンパイル、局所プルーニング、グローバルプルーニング)と42のHugging Faceモデルの影響を評価するための制御実験を行った。
動的量子化は推論時間とエネルギー消費の大幅な削減を示し、大規模システムに非常に適している。
論文 参考訳(メタデータ) (2024-09-19T16:23:03Z) - Computing Within Limits: An Empirical Study of Energy Consumption in ML Training and Inference [2.553456266022126]
機械学習(ML)は大きな進歩を遂げているが、その環境のフットプリントは依然として懸念されている。
本稿では,グリーンMLの環境影響の増大を認め,グリーンMLについて検討する。
論文 参考訳(メタデータ) (2024-06-20T13:59:34Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - EnergyVis: Interactively Tracking and Exploring Energy Consumption for
ML Models [8.939420322774243]
EnergyVisは機械学習(ML)モデルのためのインタラクティブなエネルギー消費トラッカーです。
研究者は、重要なエネルギー消費と炭素フットプリントのメトリクス間で、モデルエネルギー消費をインタラクティブに追跡、可視化、比較することができる。
EnergyVisは、モデルトレーニング中に過剰なエネルギー使用量をインタラクティブに強調することで、計算持続可能性に関する意識向上を目指しています。
論文 参考訳(メタデータ) (2021-03-30T15:33:43Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。