論文の概要: Annealed Relaxation of Speculative Decoding for Faster Autoregressive Image Generation
- arxiv url: http://arxiv.org/abs/2601.09212v1
- Date: Wed, 14 Jan 2026 06:35:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.295867
- Title: Annealed Relaxation of Speculative Decoding for Faster Autoregressive Image Generation
- Title(参考訳): 高速自己回帰画像生成のための投機的復号化法
- Authors: Xingyao Li, Fengzhuo Zhang, Cunxiao Du, Hui Ji,
- Abstract要約: 2つの重要な洞察に基づいて構築された投機的復号化のアニール緩和であるCOOL-SDを提案する。
実験によりCOOL-SDの有効性が検証され、速度品質トレードオフにおける従来の手法よりも一貫した改善が示された。
- 参考スコア(独自算出の注目度): 32.808855735559135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite significant progress in autoregressive image generation, inference remains slow due to the sequential nature of AR models and the ambiguity of image tokens, even when using speculative decoding. Recent works attempt to address this with relaxed speculative decoding but lack theoretical grounding. In this paper, we establish the theoretical basis of relaxed SD and propose COOL-SD, an annealed relaxation of speculative decoding built on two key insights. The first analyzes the total variation (TV) distance between the target model and relaxed speculative decoding and yields an optimal resampling distribution that minimizes an upper bound of the distance. The second uses perturbation analysis to reveal an annealing behaviour in relaxed speculative decoding, motivating our annealed design. Together, these insights enable COOL-SD to generate images faster with comparable quality, or achieve better quality at similar latency. Experiments validate the effectiveness of COOL-SD, showing consistent improvements over prior methods in speed-quality trade-offs.
- Abstract(参考訳): 自己回帰画像生成の大幅な進歩にもかかわらず、推論はARモデルのシーケンシャルな性質と画像トークンのあいまいさのため、投機的復号を用いた場合でも遅いままである。
最近の研究は、緩和された投機的復号法でこの問題に対処しようとするが、理論的根拠は欠如している。
本稿では,緩和SDの理論的基礎を確立し,2つの重要な洞察に基づいて構築された投機的復号化のアニール緩和であるCOOL-SDを提案する。
第1は、対象モデルと緩和された投機的復号化の間の総変動(TV)距離を分析し、距離の上限を最小化する最適な再サンプリング分布を得る。
2つ目は摂動解析を用いて、緩和された投機的復号法における熱処理の振る舞いを明らかにし、熱処理された設計を動機付けます。
これらの洞察によって、COOL-SDは、同等の品質で画像を高速に生成したり、同様のレイテンシでより良い品質を達成することができる。
実験によりCOOL-SDの有効性が検証され、速度品質トレードオフにおける従来の手法よりも一貫した改善が示された。
関連論文リスト
- Multi-Scale Local Speculative Decoding for Image Generation [10.239314110594249]
マルチスケールローカル投機復号(MuLo-SD)を導入する。
MuLo-SDは、多重解像度のドラフトと空間情報による検証を組み合わせることで、AR画像生成を高速化する。
我々は MuLo-SD が $mathbf1.7times$ までの大幅な高速化を実現することを示した。
論文 参考訳(メタデータ) (2026-01-08T17:39:35Z) - Hawk: Leveraging Spatial Context for Faster Autoregressive Text-to-Image Generation [87.00172597953228]
投機的復号化は、品質を損なうことなくテキスト生成を加速させる可能性を示している。
我々は、画像の空間構造を利用して投機モデルをより正確で効率的な予測へと導く新しいアプローチであるHawkを紹介する。
複数のテキストと画像のベンチマークの実験結果は、標準的なARモデルよりも1.71倍のスピードアップを示している。
論文 参考訳(メタデータ) (2025-10-29T17:43:31Z) - Steering One-Step Diffusion Model with Fidelity-Rich Decoder for Fast Image Compression [36.10674664089876]
SODECは単一ステップ拡散に基づく画像圧縮モデルである。
遺伝子前駆体への過度な依存から生じる忠実性を改善する。
既存の手法よりも優れており、より優れたレート・歪み・知覚性能を実現している。
論文 参考訳(メタデータ) (2025-08-07T02:24:03Z) - Higher fidelity perceptual image and video compression with a latent conditioned residual denoising diffusion model [55.2480439325792]
本稿では,認知品質に最適化されたハイブリッド圧縮方式を提案し,CDCモデルのアプローチをデコーダネットワークで拡張する。
CDCと比較した場合,LPIPSとFIDの知覚スコアを比較検討しながら,最大2dBPSNRの忠実度向上を実現した。
論文 参考訳(メタデータ) (2025-05-19T14:13:14Z) - Ultra Lowrate Image Compression with Semantic Residual Coding and Compression-aware Diffusion [28.61304513668606]
ResULICは残留誘導型超低レート画像圧縮システムである。
残差信号は意味検索と拡散に基づく生成プロセスの両方に組み込む。
最先端拡散法に比べて客観的・主観的性能に優れる。
論文 参考訳(メタデータ) (2025-05-13T06:51:23Z) - CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLICは、学習したロスレス画像圧縮のための新しい最先端(SOTA)を設定する。
本稿では,畳み込みゲーティング操作を利用したコンテンツ認識型自己回帰自己保持機構を提案する。
エンコーディング中、低ランク行列を用いて深度の畳み込みを含む事前学習層を分解し、レート誘導プログレッシブファインタニング(RPFT)による画像検査にインクリメンタルウェイトを適応させる。
推定エントロピーにより下位順にソートされたパッチを徐々に増加させたRPFTファインチューン,学習過程の最適化,適応時間の短縮を実現した。
論文 参考訳(メタデータ) (2024-12-23T10:41:18Z) - Timestep-Aware Diffusion Model for Extreme Image Rescaling [47.89362819768323]
本稿では,時間認識拡散モデル(TADM)と呼ばれる,画像再スケーリングのための新しいフレームワークを提案する。
TADMは、事前訓練されたオートエンコーダの潜在空間で再スケーリング操作を行う。
これは、事前訓練されたテキスト・ツー・イメージ拡散モデルによって学習された強力な自然画像の先行を効果的に活用する。
論文 参考訳(メタデータ) (2024-08-17T09:51:42Z) - Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference [95.42299246592756]
本稿では,UNetエンコーダについて検討し,エンコーダの特徴を実証的に分析する。
エンコーダの特徴は最小限に変化するが,デコーダの特徴は時間段階によって大きく異なる。
我々は、テキスト・ツー・ビデオ、パーソナライズド・ジェネレーション、参照誘導ジェネレーションといった他のタスクに対するアプローチを検証する。
論文 参考訳(メタデータ) (2023-12-15T08:46:43Z) - Semi-Autoregressive Image Captioning [153.9658053662605]
画像キャプションに対する現在の最先端のアプローチは、通常自己回帰的手法を採用する。
連続的反復改善による非自己回帰画像キャプションは、かなりの加速を伴う自己回帰画像キャプションに匹敵する性能が得られる。
本稿では,性能と速度のトレードオフを改善するために,SAIC(Semi-Autoregressive Image Captioning)と呼ばれる新しい2段階のフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-11T15:11:54Z) - Causal Contextual Prediction for Learned Image Compression [36.08393281509613]
本稿では,逐次的復号化プロセスを利用して潜在空間における因果文脈のエントロピー予測を行うために,分離エントロピー符号化の概念を提案する。
チャネル間の潜伏を分離し、チャネル間の関係を利用して高度に情報的コンテキストを生成する因果コンテキストモデルを提案する。
また、未知点の正確な予測のためのグローバル参照ポイントを見つけることができる因果的大域的予測モデルを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:15:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。