論文の概要: Frequency Error-Guided Under-sampling Optimization for Multi-Contrast MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2601.09316v1
- Date: Wed, 14 Jan 2026 09:40:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.351287
- Title: Frequency Error-Guided Under-sampling Optimization for Multi-Contrast MRI Reconstruction
- Title(参考訳): マルチコントラストMRI再構成における周波数誤差誘導アンダーサンプリング最適化
- Authors: Xinming Fang, Chaoyan Huang, Juncheng Li, Jun Wang, Jun Shi, Guixu Zhang,
- Abstract要約: マルチコントラストMRIは,完全サンプリング参照スキャンからの補完情報を活用することで,有望な方向として現れる。
既存のアプローチには,(1)表面的参照融合戦略,(2)参照コントラストによって提供される補完情報の不十分な利用,(3)固定アンダーサンプリングパターンの3つの大きな制限がある。
本稿では,これらの問題に対処するための,効率よく解釈可能な周波数誤差誘導再構成フレームワークを提案する。
- 参考スコア(独自算出の注目度): 24.246450246745905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magnetic resonance imaging (MRI) plays a vital role in clinical diagnostics, yet it remains hindered by long acquisition times and motion artifacts. Multi-contrast MRI reconstruction has emerged as a promising direction by leveraging complementary information from fully-sampled reference scans. However, existing approaches suffer from three major limitations: (1) superficial reference fusion strategies, such as simple concatenation, (2) insufficient utilization of the complementary information provided by the reference contrast, and (3) fixed under-sampling patterns. We propose an efficient and interpretable frequency error-guided reconstruction framework to tackle these issues. We first employ a conditional diffusion model to learn a Frequency Error Prior (FEP), which is then incorporated into a unified framework for jointly optimizing both the under-sampling pattern and the reconstruction network. The proposed reconstruction model employs a model-driven deep unfolding framework that jointly exploits frequency- and image-domain information. In addition, a spatial alignment module and a reference feature decomposition strategy are incorporated to improve reconstruction quality and bridge model-based optimization with data-driven learning for improved physical interpretability. Comprehensive validation across multiple imaging modalities, acceleration rates (4-30x), and sampling schemes demonstrates consistent superiority over state-of-the-art methods in both quantitative metrics and visual quality. All codes are available at https://github.com/fangxinming/JUF-MRI.
- Abstract(参考訳): 磁気共鳴画像(MRI)は臨床診断において重要な役割を担っているが、長い取得時間と運動アーティファクトによって妨げられている。
マルチコントラストMRIは,完全サンプリング参照スキャンからの補完情報を活用することで,有望な方向として現れる。
しかし,既存のアプローチには,(1)単純な結合のような表面的参照融合戦略,(2)参照コントラストによって提供される補完情報の不十分な利用,(3)固定アンダーサンプリングパターンの3つの大きな制限がある。
本稿では,これらの問題に対処するための,効率よく解釈可能な周波数誤差誘導再構成フレームワークを提案する。
まず、条件付き拡散モデルを用いて周波数誤差優先(FEP)を学習し、次にアンダーサンプリングパターンと再構成ネットワークを協調的に最適化する統合フレームワークに組み込む。
提案モデルでは,周波数領域と画像領域情報を協調的に活用するモデル駆動の深部展開フレームワークを採用している。
また、空間アライメントモジュールと参照特徴分解戦略が組み込まれ、リコンストラクション品質とブリッジモデルに基づく最適化が実現され、データ駆動学習が実現され、物理的解釈性が向上する。
複数の画像モダリティ、加速度速度(4-30x)、サンプリングスキームの総合的な検証は、定量的な測定値と視覚的品質の両方において最先端の手法よりも一貫した優位性を示す。
すべてのコードはhttps://github.com/fangxinming/JUF-MRIで入手できる。
関連論文リスト
- Resolution-Independent Neural Operators for Multi-Rate Sparse-View CT [67.14700058302016]
深層学習手法は高忠実度再構成を実現するが、しばしば固定された取得設定に過度に適合する。
本稿では,連続関数空間に拡張したCT再構成フレームワークであるComputed Tomography Neural Operator (CTO)を提案する。
CTOは一貫性のあるマルチサンプリングレートとクロスレゾリューションのパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-12-13T08:31:46Z) - DuDoUniNeXt: Dual-domain unified hybrid model for single and
multi-contrast undersampled MRI reconstruction [24.937435059755288]
そこで我々はDuDoUniNeXtを提案する。DuDoUniNeXtは、不在、低品質、高品質な参照画像を含むシナリオに対応可能な、統合されたデュアルドメインMRI再構成ネットワークである。
実験により,提案モデルが最先端のSCモデルとMCモデルを大幅に上回ることを示した。
論文 参考訳(メタデータ) (2024-03-08T12:26:48Z) - Unsupervised Adaptive Implicit Neural Representation Learning for
Scan-Specific MRI Reconstruction [8.721677700107639]
アンダーサンプリングにおけるスパーシリティレベルやパターンに制約されることなく、再構成品質を向上させる、教師なし適応型粗大化フレームワークを提案する。
我々は,獲得したk空間信号の自己超越的利用を段階的に洗練する,新しい学習戦略を統合する。
提案手法は,8倍のアンダーサンプリングを行うため,現在最先端のスキャン特異的MRI再構成技術より優れている。
論文 参考訳(メタデータ) (2023-12-01T16:00:16Z) - CAMP-Net: Consistency-Aware Multi-Prior Network for Accelerated MRI
Reconstruction [4.967600587813224]
k空間データをMRIでアンサンプすることでスキャン時間が短縮されるが、画像再構成において課題が生じる。
CAMP-Net は,MRI の高速化のためのアンロール型 Consistency-Aware Multi-Prior Network を提案する。
論文 参考訳(メタデータ) (2023-06-20T02:21:45Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - Transformer-empowered Multi-scale Contextual Matching and Aggregation
for Multi-contrast MRI Super-resolution [55.52779466954026]
マルチコントラスト・スーパーレゾリューション (SR) 再構成により, SR画像の高画質化が期待できる。
既存の手法では、これらの特徴をマッチングし、融合させる効果的なメカニズムが欠如している。
そこで本稿では,トランスフォーマーを利用したマルチスケールコンテキストマッチングとアグリゲーション技術を開発することで,これらの問題を解決する新しいネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-26T01:42:59Z) - Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI [52.656075914042155]
本稿では,MRIによる他のモダリティ獲得のためのアンダーサンプリングパターンを最適化するための反復的フレームワークを提案する。
公開データセット上で学習したアンダーサンプリングパターンの優れた性能を実証した。
論文 参考訳(メタデータ) (2021-11-11T04:04:48Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
臨床実践では、複数のコントラストを持つMRIが1つの研究で取得されるのが普通である。
近年の研究では、異なるコントラストやモダリティの冗長性を考慮すると、k空間にアンダーサンプリングされたMRIの目標モダリティは、完全にサンプリングされたシーケンスの助けを借りてよりよく再構成できることが示されている。
本稿では,空間アライメントネットワークと再構成を統合し,再構成対象のモダリティの質を向上させる。
論文 参考訳(メタデータ) (2021-08-12T08:46:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。