論文の概要: Frame of Reference: Addressing the Challenges of Common Ground Representation in Situational Dialogs
- arxiv url: http://arxiv.org/abs/2601.09365v1
- Date: Wed, 14 Jan 2026 10:45:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-15 18:59:20.369968
- Title: Frame of Reference: Addressing the Challenges of Common Ground Representation in Situational Dialogs
- Title(参考訳): 参照の枠組み:状況対話における共通接地表現の課題
- Authors: Biswesh Mohapatra, Théo Charlot, Giovanni Duca, Mayank Palan, Laurent Romary, Justine Cassell,
- Abstract要約: 音声対話において、共通場は重要な役割を担い、対話者は、一貫性のある対話を維持するために、実体、出来事、関係の共有参照を維持する必要がある。
我々は、状況対話において、共有コンテキスト内のエンティティへのリレーショナル参照を通じて、共通基盤を確立し、活用するモデルの能力を評価する。
- 参考スコア(独自算出の注目度): 2.730457204085116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Common ground plays a critical role in situated spoken dialogues, where interlocutors must establish and maintain shared references to entities, events, and relations to sustain coherent interaction. For dialog systems, the ability to correctly ground conversational content in order to refer back to it later is particularly important. Prior studies have demonstrated that LLMs are capable of performing grounding acts such as requesting clarification or producing acknowledgments, yet relatively little work has investigated how common ground can be explicitly represented and stored for later use. Without such mechanisms, it remains unclear whether acknowledgment or clarification behaviors truly reflect a grounded understanding. In this work, we evaluate a model's ability to establish and exploit common ground through relational references to entities within the shared context in a situational dialogue. We test multiple methods for representing common ground in situated dialogues and further propose approaches to improve both the establishment of common ground and its subsequent use in the conversation.
- Abstract(参考訳): 音声対話において、共通場は重要な役割を担い、対話者は、一貫性のある対話を維持するために、実体、出来事、関係に対する共通の参照を確立し、維持しなければならない。
ダイアログシステムでは,後に参照するために会話内容を正しくグラウンドできることが特に重要である。
以前の研究では、LCMは、明確化の要求や承認の獲得といった基礎的な行為を行うことができることが示されているが、後から使われるために、どのように共通グラウンドが明示的に表現され、保存されるかは、比較的研究されていない。
このようなメカニズムがなければ、理解または明確化の行動が真に根底からの理解を反映しているかどうかは不明なままである。
本研究では、状況対話において、共有コンテキスト内のエンティティへのリレーショナル参照を通じて、共通基盤を確立し、活用するモデルの能力を評価する。
そこで我々は, 対話における共通基盤の表現法を複数試行し, さらに, 会話における共通基盤の確立とその後の活用の両面を改善するためのアプローチを提案する。
関連論文リスト
- Analysing Cross-Speaker Convergence in Face-to-Face Dialogue through the Lens of Automatically Detected Shared Linguistic Constructions [4.216085185442862]
本研究は,参照通信コーパスに対する共用補間構造の自動検出手法を適用した。
そこで本研究では,共用構造物の相互作用における利用パターンを明らかにし,その頻度や参照対象の異なる構成量などの特徴が,オブジェクトラベルの収束度と関連していることを明らかにした。
論文 参考訳(メタデータ) (2024-05-14T12:34:25Z) - Common Ground Tracking in Multimodal Dialogue [13.763043173931024]
本研究では,共有目標を持つグループの「議論」の下での,現在の共有信念と質問の集合を自動的に識別する手法を提案する。
我々は、音声の書き起こし、韻律的特徴、ジェスチャー、行動、コラボレーションの顔を含む、共有物理空間におけるマルチモーダル相互作用のデータセットを注釈付けする。
我々は、位置する証拠と信念の公理から導かれる正式なクロージャルールのセットにカスケードし、操作を更新します。
論文 参考訳(メタデータ) (2024-03-26T00:25:01Z) - Conversational Grounding: Annotation and Analysis of Grounding Acts and Grounding Units [3.805394793605586]
本稿では, 接地法, 接地法, 接地単位を用いた2つの対話コーパスのアノテーションと, それらの接地度を測る尺度について述べる。
我々の研究は、日常の対話において機械との会話をよりよく理解し、信頼性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-03-25T10:39:18Z) - 'What are you referring to?' Evaluating the Ability of Multi-Modal
Dialogue Models to Process Clarificational Exchanges [65.03196674816772]
参照表現が宛先に対して意図された参照を一意に識別しない場合、参照の曖昧さが対話で生じる。
出席者は、通常、そのような曖昧さをすぐに検知し、メタコミュニケーション、明確化取引所(CE: Meta-communicative, Clarification Exchanges)を使用して、話者と作業する。
ここでは、CRを生成・応答する能力は、マルチモーダルな視覚的基盤を持つ対話モデルのアーキテクチャと目的関数に特定の制約を課していると論じる。
論文 参考訳(メタデータ) (2023-07-28T13:44:33Z) - MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation [62.44907105496227]
MindDialは、Mind-of-mindモデリングで位置決め自由形式の応答を生成できる、新しい対話型フレームワークである。
本研究では、話者の信念と話者の聴取者の信念を予測できる明示的なマインドモジュールを導入する。
筆者らのフレームワークは,提案手法と微調整モデルの両方に適用され,共通地盤アライメントとネゴシエーションの両方を含むシナリオで評価される。
論文 参考訳(メタデータ) (2023-06-27T07:24:32Z) - DiPlomat: A Dialogue Dataset for Situated Pragmatic Reasoning [89.92601337474954]
プラグマティック推論は、実生活における会話でしばしば起こる暗黙の意味を解読する上で重要な役割を担っている。
そこで我々は,現実的な推論と会話理解の場所に関するマシンの能力のベンチマークを目的とした,新しい挑戦であるDiPlomatを紹介した。
論文 参考訳(メタデータ) (2023-06-15T10:41:23Z) - Can Visual Dialogue Models Do Scorekeeping? Exploring How Dialogue Representations Incrementally Encode Shared Knowledge [19.812562421377706]
本稿では,VisDialデータセットで事前訓練されたモデルが,スコアスコアリングを適切に行うための表現を段階的に構築する理論に基づく評価手法を提案する。
我々の結論は、対話に沿った共有文とプライベートステートメントを区別する能力は、分析モデルには適度に存在しているが、必ずしも漸進的に一貫性があるとは限らないということである。
論文 参考訳(メタデータ) (2022-04-14T13:52:11Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - Who Responded to Whom: The Joint Effects of Latent Topics and Discourse
in Conversation Structure [53.77234444565652]
会話談話における応答関係を同定し,会話の開始に応答発話をリンクする。
単語分布における潜在トピックと会話を学習し,ペアワイズ開始応答リンクを予測するモデルを提案する。
英語と中国語の会話における実験結果から,我々のモデルは過去の芸術の状況を大きく上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T17:46:00Z) - Dialogue-Based Relation Extraction [53.2896545819799]
本稿では,人間による対話型関係抽出(RE)データセットDialogREを提案する。
我々は,対話型タスクと従来のREタスクの類似点と相違点の分析に基づいて,提案課題において話者関連情報が重要な役割を担っていると論じる。
実験結果から,ベストパフォーマンスモデルにおける話者認識の拡張が,標準設定と会話評価設定の両方において向上することが示された。
論文 参考訳(メタデータ) (2020-04-17T03:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。