論文の概要: A New Convergence Analysis of Plug-and-Play Proximal Gradient Descent Under Prior Mismatch
- arxiv url: http://arxiv.org/abs/2601.09831v1
- Date: Wed, 14 Jan 2026 19:47:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-16 19:43:18.876627
- Title: A New Convergence Analysis of Plug-and-Play Proximal Gradient Descent Under Prior Mismatch
- Title(参考訳): プリミストマッチによるプラグ・アンド・プレイ近位勾配の新たな収束解析
- Authors: Guixian Xu, Jinglai Li, Junqi Tang,
- Abstract要約: 本稿では,タスクデータに対する異なる勾配分布に基づいてミスマッチをトレーニングした場合に,プラグアンドプレイ降下(-PGD)に対する新しい収束理論を提案する。
我々の知る限りでは、これは事前推論の下での初めての収束証明-PGDである。
- 参考スコア(独自算出の注目度): 6.546376089353312
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we provide a new convergence theory for plug-and-play proximal gradient descent (PnP-PGD) under prior mismatch where the denoiser is trained on a different data distribution to the inference task at hand. To the best of our knowledge, this is the first convergence proof of PnP-PGD under prior mismatch. Compared with the existing theoretical results for PnP algorithms, our new results removed the need for several restrictive and unverifiable assumptions.
- Abstract(参考訳): 本研究では,前ミスマッチ下でのプラグアンドプレイ近位勾配降下(PnP-PGD)の新しい収束理論を提案する。
我々の知る限りでは、これは PnP-PGD の事前のミスマッチの下での初めての収束証明である。
PnPアルゴリズムの既存の理論的結果と比較すると、新しい結果はいくつかの制限的かつ検証不可能な仮定の必要性を排除した。
関連論文リスト
- Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Prior Mismatch and Adaptation in PnP-ADMM with a Nonconvex Convergence
Analysis [20.63188897629508]
Plug-and-Playは、逆イメージング問題を解決するために広く使われているファミリーメソッドである。
ディープ・メソッドは、前者が強力なデノイザを用いて得られるとき、最先端の性能を達成することが示されている。
論文 参考訳(メタデータ) (2023-09-29T20:49:00Z) - A relaxed proximal gradient descent algorithm for convergent
plug-and-play with proximal denoiser [6.2484576862659065]
本稿では,新しいコンバーゼントなPlug-and-fidelity Descent (Play)アルゴリズムを提案する。
このアルゴリズムは、より広い範囲の通常の凸化パラメータに収束し、画像のより正確な復元を可能にする。
論文 参考訳(メタデータ) (2023-01-31T16:11:47Z) - Sample-Efficient Optimisation with Probabilistic Transformer Surrogates [66.98962321504085]
本稿では,ベイズ最適化における最先端確率変換器の適用可能性について検討する。
トレーニング手順と損失定義から生じる2つの欠点を観察し、ブラックボックス最適化のプロキシとして直接デプロイすることを妨げる。
1)非一様分散点を前処理するBO調整トレーニング,2)予測性能を向上させるために最適な定常点をフィルタする新しい近似後正則整定器トレードオフ精度と入力感度を導入する。
論文 参考訳(メタデータ) (2022-05-27T11:13:17Z) - Proximal denoiser for convergent plug-and-play optimization with
nonconvex regularization [7.0226402509856225]
Plug-and-Play ()メソッドは、ニューラルネットワーク演算子をデノナイジング演算子に置き換えることで、アルゴリズムによって、近位姿勢の逆問題を解決する。
このデノイザが実際に勾配関数に対応していることが示される。
論文 参考訳(メタデータ) (2022-01-31T14:05:20Z) - Recovery Analysis for Plug-and-Play Priors using the Restricted
Eigenvalue Condition [48.08511796234349]
本稿では, プラグアンドプレイ先行(ノイズ)の理論的回復保証の確立方法と, RED法による正規化について述べる。
以上の結果から,事前学習したアーティファクト除去ネットワークを用いたモデルの方が,既存の最先端手法と比較して有意に優れた結果が得られることが示唆された。
論文 参考訳(メタデータ) (2021-06-07T14:45:38Z) - Linear Convergent Decentralized Optimization with Compression [50.44269451541387]
圧縮を伴う既存の分散アルゴリズムは主にDGD型アルゴリズムの圧縮に焦点を当てている。
原始双対アルゴリズムによって動機付けられた本論文は、最初のアンダーラインLinunderlineEAr収束を提案する。
underline Decentralized with compression, LEAD。
論文 参考訳(メタデータ) (2020-07-01T04:35:00Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
コミュニケーションのボトルネックは、大規模なディープラーニングにおいて重要な問題である。
非効率な分散問題に対する誤りフィードバックよりも優れた収束性を示す分散誤差フィードバック(DEF)アルゴリズムを提案する。
また、DEFよりも優れた境界を示すDEFの一般化を加速するDEFAを提案する。
論文 参考訳(メタデータ) (2020-04-11T03:50:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。