論文の概要: Disentangled Concept Representation for Text-to-image Person Re-identification
- arxiv url: http://arxiv.org/abs/2601.10053v1
- Date: Thu, 15 Jan 2026 04:08:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-16 19:43:18.981537
- Title: Disentangled Concept Representation for Text-to-image Person Re-identification
- Title(参考訳): テキスト・ツー・イメージの人物識別のためのディスタングル型概念表現
- Authors: Giyeol Kim, Chanho Eom,
- Abstract要約: TIReIDは、視覚的外観とテキスト表現の間にかなりのモダリティのギャップがあるため、難しい。
本稿では,階層的かつ不整合なクロスモーダルアライメントを実現する新しいフレームワークであるDiCoを提案する。
我々のフレームワークは最先端の手法と競合する性能を実現している。
- 参考スコア(独自算出の注目度): 4.581495198705364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image person re-identification (TIReID) aims to retrieve person images from a large gallery given free-form textual descriptions. TIReID is challenging due to the substantial modality gap between visual appearances and textual expressions, as well as the need to model fine-grained correspondences that distinguish individuals with similar attributes such as clothing color, texture, or outfit style. To address these issues, we propose DiCo (Disentangled Concept Representation), a novel framework that achieves hierarchical and disentangled cross-modal alignment. DiCo introduces a shared slot-based representation, where each slot acts as a part-level anchor across modalities and is further decomposed into multiple concept blocks. This design enables the disentanglement of complementary attributes (\textit{e.g.}, color, texture, shape) while maintaining consistent part-level correspondence between image and text. Extensive experiments on CUHK-PEDES, ICFG-PEDES, and RSTPReid demonstrate that our framework achieves competitive performance with state-of-the-art methods, while also enhancing interpretability through explicit slot- and block-level representations for more fine-grained retrieval results.
- Abstract(参考訳): TIReID(Text-to-image person re-identification)は、自由形式のテキスト記述を与えられた大きなギャラリーから人物画像を取得することを目的としている。
TIReIDは、視覚的外観とテクスチャ表現の実質的なモダリティのギャップや、衣服の色、テクスチャ、服装スタイルといった類似した属性を持つ個人を識別する微粒な対応をモデル化する必要があるため、難しい。
これらの問題に対処するため, 階層的かつ不整合なクロスモーダルアライメントを実現する新しいフレームワークであるDiCo(Disentangled Concept Representation)を提案する。
DiCoは共有スロットベースの表現を導入し、各スロットはモダリティをまたいだ部分レベルのアンカーとして機能し、さらに複数の概念ブロックに分解される。
この設計により、画像とテキスト間の一貫した部分レベルの対応を維持しつつ、相補的属性(\textit{e g }, color, texture, shape)の切り離しを可能にする。
CUHK-PEDES, ICFG-PEDES, RSTPReidの広範囲な実験により, このフレームワークは最先端の手法と競合する性能を実現するとともに, よりきめ細かい検索結果を得るために, 明示的なスロットレベルおよびブロックレベルの表現による解釈性の向上を図っている。
関連論文リスト
- Nested Attention: Semantic-aware Attention Values for Concept Personalization [78.90196530697897]
我々はNested Attentionを紹介した。これはモデル内の既存のクロスアテンション層にリッチで表現豊かなイメージ表現を注入する新しいメカニズムである。
私たちのキーとなるアイデアは、ネストした注意層から得られたクエリ依存の主観値を生成し、生成した画像の各領域について関連する主観的特徴を選択することである。
論文 参考訳(メタデータ) (2025-01-02T18:52:11Z) - Embedding and Enriching Explicit Semantics for Visible-Infrared Person Re-Identification [31.011118085494942]
Visible-infrared person re-identification (VIReID)は、異なるモードで同じ同一の歩行者画像を取得する。
既存の方法は画像のみから視覚的コンテンツを学習するが、高レベルの意味を感知する能力は欠如している。
本稿では,意味的にリッチな横断歩行者表現を学習するための埋め込み・拡張型明示的意味論フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-11T14:27:30Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
テキスト・ツー・イメージ拡散技術は、テキスト記述から高品質な画像を生成する素晴らしい能力を示している。
そこで本研究では,オープン語彙を応用した最先端拡散モデルを用いて,多スケールのテキスト・視覚的特徴を学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-29T07:59:07Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [12.057465578064345]
テキスト・ツー・イメージ・パーソナリティ検索(TIPR)の目的は、与えられたテキスト記述に従って特定の人物画像を取得することである。
本稿では,人物画像と対応するテキスト間のきめ細かいインタラクションとアライメントを構築するための新しいTIPRフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T08:23:46Z) - Efficient Token-Guided Image-Text Retrieval with Consistent Multimodal
Contrastive Training [33.78990448307792]
画像テキスト検索は、視覚と言語間の意味的関係を理解するための中心的な問題である。
以前の作品では、全体像とテキストの粗い粒度の表現を単に学習するか、画像領域またはピクセルとテキストワードの対応を精巧に確立する。
本研究では、粗い表現学習ときめ細かい表現学習を統一した枠組みに組み合わせて、新しい視点から画像テキストの検索を行う。
論文 参考訳(メタデータ) (2023-06-15T00:19:13Z) - Collaborative Group: Composed Image Retrieval via Consensus Learning from Noisy Annotations [67.92679668612858]
我々は,集団が個人より優れているという心理的概念に触発されたコンセンサスネットワーク(Css-Net)を提案する。
Css-Netは,(1)コンセンサスモジュールと4つのコンセンサスモジュール,(2)コンセンサス間の相互作用の学習を促進するKulback-Leibler分散損失の2つのコアコンポーネントから構成される。
ベンチマークデータセット、特にFashionIQでは、Css-Netが大幅に改善されている。特に、R@10が2.77%、R@50が6.67%増加し、リコールが大幅に向上している。
論文 参考訳(メタデータ) (2023-06-03T11:50:44Z) - BOSS: Bottom-up Cross-modal Semantic Composition with Hybrid
Counterfactual Training for Robust Content-based Image Retrieval [61.803481264081036]
CIR(Content-Based Image Retrieval)は,サンプル画像と補完テキストの合成を同時に解釈することで,対象画像の検索を目的とする。
本稿では,新しいアンダーラインtextbfBottom-up crunderlinetextbfOss-modal underlinetextbfSemantic compounderlinetextbfSition (textbfBOSS) とHybrid Counterfactual Training frameworkを用いてこの問題に取り組む。
論文 参考訳(メタデータ) (2022-07-09T07:14:44Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z) - Semantically Self-Aligned Network for Text-to-Image Part-aware Person
Re-identification [78.45528514468836]
ReID(Text-to-image person re-identification)は、テキスト記述を用いて興味のある人物を含む画像を検索することを目的としている。
上記の問題に対処するために,Semantically Self-Aligned Network (SSAN)を提案する。
ICFG-PEDESという新しいデータベースを構築。
論文 参考訳(メタデータ) (2021-07-27T08:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。