論文の概要: Effects of Introducing Synaptic Scaling on Spiking Neural Network Learning
- arxiv url: http://arxiv.org/abs/2601.11261v1
- Date: Fri, 16 Jan 2026 13:11:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-19 20:21:50.497956
- Title: Effects of Introducing Synaptic Scaling on Spiking Neural Network Learning
- Title(参考訳): スパイキングニューラルネットワーク学習におけるシナプススケーリングの導入効果
- Authors: Shinnosuke Touda, Hirotsugu Okuno,
- Abstract要約: 神経可塑性にインスパイアされた教師なし学習手法を用いたスパイクニューラルネットワーク(SNN)は、人工知能の新たなフレームワークとして期待されている。
スパイク時間依存性可塑性 (STDP) やシナプススケーリングなどの神経可塑性が, スパイクニューロンからなるWTAネットワークの学習に及ぼす影響について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural networks (SNNs) employing unsupervised learning methods inspired by neural plasticity are expected to be a new framework for artificial intelligence. In this study, we investigated the effect of multiple types of neural plasticity, such as spike-time-dependent plasticity (STDP) and synaptic scaling, on the learning in a winner-take-all (WTA) network composed of spiking neurons. We implemented a WTA network with multiple types of neural plasticity using Python. The MNIST and the Fashion-MNIST datasets were used for training and testing. We varied the number of neurons, the time constant of STDP, and the normalization method used in synaptic scaling to compare classification accuracy. The results demonstrated that synaptic scaling based on the L2 norm was the most effective in improving classification performance. By implementing L2-norm-based synaptic scaling and setting the number of neurons in both excitatory and inhibitory layers to 400, the network achieved classification accuracies of 88.84 % on the MNIST dataset and 68.01 % on the Fashion-MNIST dataset after one epoch of training.
- Abstract(参考訳): 神経可塑性にインスパイアされた教師なし学習手法を用いたスパイクニューラルネットワーク(SNN)は、人工知能の新たなフレームワークとして期待されている。
本研究では,スパイク時間依存的可塑性(STDP)やシナプススケーリングなどの神経可塑性が,スパイクニューロンからなるWTAネットワークの学習に及ぼす影響について検討した。
我々は,複数種類の神経可塑性を持つWTAネットワークをPythonを用いて実装した。
MNISTとFashion-MNISTデータセットは、トレーニングとテストに使用された。
分類精度を比較するために, ニューロン数, STDPの時間定数, シナプススケーリングにおける正規化法を改良した。
その結果,L2ノルムに基づくシナプススケーリングが,分類性能の向上に最も有効であることが示唆された。
L2-normベースのシナプススケーリングを実装し、興奮層と阻止層の両方のニューロン数を400に設定することにより、MNISTデータセットでは88.84 %、Fashion-MNISTデータセットでは68.01 %の分類精度を達成した。
関連論文リスト
- Extending Spike-Timing Dependent Plasticity to Learning Synaptic Delays [50.45313162890861]
シナプス接続強度と遅延を同時に学習するための新しい学習規則を導入する。
我々は、教師なし学習で訓練された分類のための広く使われているSNNモデルを拡張して、我々のアプローチを検証する。
その結果,提案手法は様々なテストシナリオにおいて常に優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2025-06-17T21:24:58Z) - Co-learning synaptic delays, weights and adaptation in spiking neural
networks [0.0]
スパイキングニューラルネットワーク(SNN)は、固有の時間処理とスパイクベースの計算のため、人工知能ニューラルネットワーク(ANN)と区別する。
スパイクニューロンを用いたデータ処理は、他の2つの生物学的にインスピレーションを受けたニューロンの特徴と接続重みを協調学習することで向上できることを示す。
論文 参考訳(メタデータ) (2023-09-12T09:13:26Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Desire Backpropagation: A Lightweight Training Algorithm for Multi-Layer
Spiking Neural Networks based on Spike-Timing-Dependent Plasticity [13.384228628766236]
スパイキングニューラルネットワーク(SNN)は、従来の人工ニューラルネットワークの代替となる。
本研究は,隠されたニューロンを含むすべてのニューロンの所望のスパイク活性を導出する方法である欲求バックプロパゲーションを提示する。
我々はMNISTとFashion-MNISTを分類するために3層ネットワークを訓練し、それぞれ98.41%と87.56%の精度に達した。
論文 参考訳(メタデータ) (2022-11-10T08:32:13Z) - Heterogeneous Recurrent Spiking Neural Network for Spatio-Temporal
Classification [13.521272923545409]
Spi Neural Networksは、人工知能の第3波の脳にインスパイアされた学習モデルとしてしばしば評価される。
本稿では,ビデオ認識タスクのための教師なし学習を用いたヘテロジニアススパイキングニューラルネットワーク(HRSNN)を提案する。
本研究では,時間的バックプロパゲーション訓練による教師付きSNNに類似した性能を実現することができるが,少ない計算量で実現可能であることを示す。
論文 参考訳(メタデータ) (2022-09-22T16:34:01Z) - aSTDP: A More Biologically Plausible Learning [0.0]
我々は,新しいニューラルネットワーク学習フレームワークSTDPを導入する。
教師なしおよび教師なしの学習にはSTDPルールのみを使用する。
追加設定なしで予測したり、ひとつのモデルでパターンを生成できる。
論文 参考訳(メタデータ) (2022-05-22T08:12:50Z) - An STDP-Based Supervised Learning Algorithm for Spiking Neural Networks [20.309112286222238]
Spiking Neural Networks (SNN)は、より生物学的に可能な脳モデルを提供する。
本稿では,Leaky Integrate-and-fire ニューロンからなる階層型 SNN に対して,Spike-Timing Dependent Plasticity (STDP) に基づく教師付き学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-07T13:40:09Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。