論文の概要: FORESTLLM: Large Language Models Make Random Forest Great on Few-shot Tabular Learning
- arxiv url: http://arxiv.org/abs/2601.11311v1
- Date: Fri, 16 Jan 2026 14:08:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-19 20:21:50.515374
- Title: FORESTLLM: Large Language Models Make Random Forest Great on Few-shot Tabular Learning
- Title(参考訳): FORESTLLM:大きな言語モデルによって、ランダムフォレストがほとんどないタブラル学習に勝る
- Authors: Zhihan Yang, Jiaqi Wei, Xiang Zhang, Haoyu Dong, Yiwen Wang, Xiaoke Guo, Pengkun Zhang, Yiwei Xu, Chenyu You,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の意味的推論能力を用いて,決定林の構造的帰納バイアスを統一する枠組みを提案する。
まずLLMがラベル付きデータとラベルなしデータの両方の一貫性に基づいて候補分割を評価するセマンティックスプリッティング基準を導入し、より堅牢で一般化可能な木構造を数発の監視下で実現する。
第2に,LLMが決定経路とその支持例を簡潔で決定論的な予測に蒸留し,雑音の多い経験的推定を意味的インフォームドアウトプットに置き換える,葉ノード安定化のためのワンタイムインコンテキスト推論機構を提案する。
- 参考スコア(独自算出の注目度): 20.27406245916013
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tabular data high-stakes critical decision-making in domains such as finance, healthcare, and scientific discovery. Yet, learning effectively from tabular data in few-shot settings, where labeled examples are scarce, remains a fundamental challenge. Traditional tree-based methods often falter in these regimes due to their reliance on statistical purity metrics, which become unstable and prone to overfitting with limited supervision. At the same time, direct applications of large language models (LLMs) often overlook its inherent structure, leading to suboptimal performance. To overcome these limitations, we propose FORESTLLM, a novel framework that unifies the structural inductive biases of decision forests with the semantic reasoning capabilities of LLMs. Crucially, FORESTLLM leverages the LLM only during training, treating it as an offline model designer that encodes rich, contextual knowledge into a lightweight, interpretable forest model, eliminating the need for LLM inference at test time. Our method is two-fold. First, we introduce a semantic splitting criterion in which the LLM evaluates candidate partitions based on their coherence over both labeled and unlabeled data, enabling the induction of more robust and generalizable tree structures under few-shot supervision. Second, we propose a one-time in-context inference mechanism for leaf node stabilization, where the LLM distills the decision path and its supporting examples into a concise, deterministic prediction, replacing noisy empirical estimates with semantically informed outputs. Across a diverse suite of few-shot classification and regression benchmarks, FORESTLLM achieves state-of-the-art performance.
- Abstract(参考訳): タブラルデータは、金融、医療、科学的発見といった分野における重要な意思決定を高く評価する。
しかし、ラベル付きサンプルが不足している数ショット設定で表データから効果的に学習することは、依然として根本的な課題である。
伝統的な木に基づく手法は、統計的な純度指標に頼っているため、これらの体制でしばしば失敗するが、それは不安定になり、限られた監督で過度に適合する傾向にある。
同時に、大きな言語モデル(LLM)の直接的な応用は、しばしばその固有の構造を見落とし、最適以下の性能をもたらす。
これらの制約を克服するために,意思決定林の構造的帰納バイアスをLLMの意味的推論能力と統合する新しいフレームワークFOESTLLMを提案する。
重要なことは、FOESTLLMはトレーニング時にのみLLMを利用し、リッチでコンテキスト的な知識を軽量で解釈可能な森林モデルにエンコードするオフラインモデルデザイナとして扱うことで、テスト時にLLM推論の必要性を排除している。
私たちの方法は2倍です。
まず,ラベル付きデータとラベル付きデータの両方のコヒーレンスに基づいて,LLMが候補分割を評価するセマンティックスプリッティング基準を導入する。
第2に,LLMが決定経路とその支持例を簡潔で決定論的な予測に蒸留し,雑音の多い経験的推定を意味的インフォームドアウトプットに置き換える,葉ノード安定化のためのワンタイムインコンテキスト推論機構を提案する。
数ショットの分類とレグレッションベンチマークの多種多様なスイートの中で、FOESTLLMは最先端のパフォーマンスを実現している。
関連論文リスト
- Is More Context Always Better? Examining LLM Reasoning Capability for Time Interval Prediction [15.45305246863211]
大規模言語モデル(LLM)は、異なるドメインをまたいだ推論と予測において印象的な能力を示している。
本稿では,LLMが繰り返しユーザの行動の時間間隔を予測できるかどうかを系統的に検討する。
我々は、統計モデルと機械学習モデルの両方に対してゼロショット設定で最先端のLCMをベンチマークする。
論文 参考訳(メタデータ) (2026-01-15T07:18:40Z) - Reasoning with Preference Constraints: A Benchmark for Language Models in Many-to-One Matching Markets [13.111181135818184]
大規模言語モデル (LLM) は、最適化を含む複雑な数学的タスクにおいて強い性能を示している。
優先的かつ構造的な制約の下で推論を必要とする問題にLLMを適用することは、まだ未定である。
我々は,大学入学問題の369件の新たなベンチマークを用いて,実用性,安定性,最適性といった重要な次元にわたるLSMを評価する。
論文 参考訳(メタデータ) (2025-09-16T14:48:46Z) - Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LFはゴール指向の潜在因子発見システムである。
命令フォロー機能と統計モデルを統合して、ノイズの多いデータセットを処理する。
論文 参考訳(メタデータ) (2025-02-21T02:03:08Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
大規模な言語モデル(LLM)は、ダウンストリームタスク間で印象的なパフォーマンスを達成するために、広範囲のラベル付きデータセットとトレーニング計算を必要とすることが多い。
本稿では,LLMが独自ラベルを自動でキュレートし,未知のデータサンプルを選択的に学習する自己学習パラダイムについて検討する。
経験的評価は、複数の被験者にまたがる世代における幻覚の減少に有意な改善を示した。
論文 参考訳(メタデータ) (2024-06-17T07:25:09Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。