論文の概要: Multimodal Multi-Agent Empowered Legal Judgment Prediction
- arxiv url: http://arxiv.org/abs/2601.12815v3
- Date: Sun, 25 Jan 2026 11:53:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-27 13:23:48.776982
- Title: Multimodal Multi-Agent Empowered Legal Judgment Prediction
- Title(参考訳): マルチモーダルマルチエージェントによる法的判断予測
- Authors: Zhaolu Kang, Junhao Gong, Qingxi Chen, Hao Zhang, Jiaxin Liu, Rong Fu, Zhiyuan Feng, Yuan Wang, Simon Fong, Kaiyue Zhou,
- Abstract要約: 法的判断予測は、事実記述に基づく訴訟の結果を予測することを目的としている。
本稿では, LJP のための新しいフレームワーク JurisMMA を紹介し, 試行作業を効果的に分解し, プロセスを標準化し, それらを異なる段階に整理する。
JurisMMとベンチマークLawBenchの実験は、我々のフレームワークの有効性を検証する。
- 参考スコア(独自算出の注目度): 13.220449013773349
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legal Judgment Prediction (LJP) aims to predict the outcomes of legal cases based on factual descriptions, serving as a fundamental task to advance the development of legal systems. Traditional methods often rely on statistical analyses or role-based simulations but face challenges with multiple allegations, diverse evidence, and lack adaptability. In this paper, we introduce JurisMMA, a novel framework for LJP that effectively decomposes trial tasks, standardizes processes, and organizes them into distinct stages. Furthermore, we build JurisMM, a large dataset with over 100,000 recent Chinese judicial records, including both text and multimodal video-text data, enabling comprehensive evaluation. Experiments on JurisMM and the benchmark LawBench validate our framework's effectiveness. These results indicate that our framework is effective not only for LJP but also for a broader range of legal applications, offering new perspectives for the development of future legal methods and datasets.
- Abstract(参考訳): 法的判断予測 (LJP) は, 事実的記述に基づく訴訟の結果を予測することを目的として, 法体系の発達を促進するための基本的な課題として機能する。
従来の手法は統計分析やロールベースのシミュレーションに頼っていることが多いが、複数の主張、多様な証拠、適応性に欠ける課題に直面している。
本稿では, LJP のための新しいフレームワーク JurisMMA を紹介し, 試行課題を効果的に分解し, プロセスを標準化し, それらを異なる段階に整理する。
さらに、JurisMMは、テキストとマルチモーダルビデオテキストデータを含む、最近の10万以上の中国の司法記録を持つ大規模なデータセットで、包括的な評価を可能にする。
JurisMMとベンチマークLawBenchの実験は、我々のフレームワークの有効性を検証する。
これらの結果から,我々のフレームワークは LJP だけでなく,幅広い法的応用にも有効であることが示唆され,将来的な法的手法やデータセットの開発に新たな視点を提供する。
関連論文リスト
- ReGal: A First Look at PPO-based Legal AI for Judgment Prediction and Summarization in India [10.522785783474857]
本稿では,Reinforcement Learning-based Legal Reasoning(ReGal)を紹介する。
本手法は, (i) 裁判所判断予測・説明(CJPE) と (ii) 法的文書要約の2つの重要な法的課題にまたがって評価される。
論文 参考訳(メタデータ) (2025-12-19T19:13:41Z) - GLARE: Agentic Reasoning for Legal Judgment Prediction [60.13483016810707]
法学分野では、法的判断予測(LJP)がますます重要になっている。
既存の大規模言語モデル (LLM) には、法的な知識が不足しているため、推論に不十分な重大な問題がある。
GLAREは,異なるモジュールを呼び出し,重要な法的知識を動的に獲得するエージェント的法的推論フレームワークである。
論文 参考訳(メタデータ) (2025-08-22T13:38:12Z) - ASP2LJ : An Adversarial Self-Play Laywer Augmented Legal Judgment Framework [21.003203706712643]
法的判断予測 (LJP) は、関連する法的費用、条件、罰金を含む司法結果を予測することを目的としている。
現在のデータセットは、真正ケースから派生したもので、高い人間のアノテーションコストと不均衡な分布に悩まされている。
本稿では, ASP2LJ という法定法定法定フレームワークを提案する。
我々の枠組みは、裁判官が進化した弁護士の議論を参照することを可能にし、司法決定の客観性、公正性、合理性を改善する。
論文 参考訳(メタデータ) (2025-06-11T06:55:40Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLawは、アメリカ合衆国控訴裁判所の無視事件を慎重に注釈付けした471のデータセットである。
我々のデータセットは、より人間らしく説明可能な法的な判断予測モデルの基礎となる。
その結果、LJPは依然として厳しい課題であり、法的な前例の適用は特に困難であることが示されている。
論文 参考訳(メタデータ) (2025-02-28T19:14:48Z) - Legal Evalutions and Challenges of Large Language Models [42.51294752406578]
我々は,OPENAI o1モデルを事例研究として,法律規定の適用における大規模モデルの性能評価に利用した。
我々は、オープンソース、クローズドソース、および法律ドメインのために特別に訓練された法律固有のモデルを含む、最先端のLLMを比較します。
論文 参考訳(メタデータ) (2024-11-15T12:23:12Z) - LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - InternLM-Law: An Open Source Chinese Legal Large Language Model [72.2589401309848]
InternLM-Lawは、中国法に関する様々な法的クエリに対処するための特殊なLLMである。
われわれは、中国法域に100万以上のクエリを含むデータセットを慎重に構築する。
InternLM-LawはLawBench上で最高の平均性能を達成し、20サブタスク中13サブタスクでGPT-4を含む最先端モデルを上回っている。
論文 参考訳(メタデータ) (2024-06-21T06:19:03Z) - Low-Resource Court Judgment Summarization for Common Law Systems [32.13166048504629]
CLSumは,多審理法裁判所判決文書を要約する最初のデータセットである。
これは、データ拡張、要約生成、評価において、大規模言語モデル(LLM)を採用する最初の裁判所判決要約作業である。
論文 参考訳(メタデータ) (2024-03-07T12:47:42Z) - Multi-Defendant Legal Judgment Prediction via Hierarchical Reasoning [49.23103067844278]
マルチディペンダント・ケースの各被告に対する判断結果を自動予測することを目的としたマルチディペンダント・LJPの課題を提案する。
マルチディペンダント LJP の課題は,(1) 各被告の識別不能な判断結果, (2) 訓練と評価のための実世界のデータセットの欠如である。
論文 参考訳(メタデータ) (2023-12-10T04:46:30Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
訴訟の事実記述文を考慮し、法的判断予測は、事件の告訴、法律記事、刑期を予測することを目的としている。
従来の研究では、標準的なクロスエントロピー分類損失と異なる分類誤差を区別できなかった。
本稿では,モコに基づく教師付きコントラスト学習を提案する。
さらに,事前学習した数値モデルにより符号化された抽出された犯罪量による事実記述の表現をさらに強化する。
論文 参考訳(メタデータ) (2022-11-15T15:53:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。