論文の概要: PrivFly: A Privacy-Preserving Self-Supervised Framework for Rare Attack Detection in IoFT
- arxiv url: http://arxiv.org/abs/2601.13003v1
- Date: Mon, 19 Jan 2026 12:30:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:22.898125
- Title: PrivFly: A Privacy-Preserving Self-Supervised Framework for Rare Attack Detection in IoFT
- Title(参考訳): PrivFly: IoFTにおけるレア攻撃検出のためのプライバシー保護型自己監視フレームワーク
- Authors: Safaa Menssouri, El Mehdi Amhoud,
- Abstract要約: Internet of Flying Things (IoFT)は、航空監視やスマートモビリティといった現代の応用において重要な役割を担っている。
Internet of Flying Things (IoFT)は、航空監視やスマートモビリティといった現代の応用において重要な役割を担っている。
- 参考スコア(独自算出の注目度): 2.217288163160845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Internet of Flying Things (IoFT) plays a vital role in modern applications such as aerial surveillance and smart mobility. However, it remains highly vulnerable to cyberattacks that threaten the confidentiality, integrity, and availability of sensitive data. Developing effective intrusion detection systems (IDS) for IoFT networks faces key challenges, including data imbalance, privacy concerns, and the limited capability of traditional models to detect rare but potentially damaging cyber threats. In this work, we propose PrivFly, a privacy-preserving IDS framework that integrates self-supervised representation learning and differential privacy (DP) to enhance detection performance in imbalanced IoFT network traffic. We propose a masked feature reconstruction module for self-supervised pretraining, improving feature representations and boosting rare-class detection. Differential privacy is applied during training to protect sensitive information without significantly compromising model performance. In addition, we conduct a SHapley additive explanations (SHAP)-based analysis to evaluate the impact of DP on feature importance and model behavior. Experimental results on the ECU-IoFT dataset show that PrivFly achieves up to 98% accuracy and 99% F1-score, effectively balancing privacy and detection performance for secure IoFT systems.
- Abstract(参考訳): Internet of Flying Things (IoFT)は、航空監視やスマートモビリティといった現代の応用において重要な役割を担っている。
しかし、機密データの機密性、完全性、可用性を脅かすサイバー攻撃に対して、依然として非常に脆弱である。
IoFTネットワークの効果的な侵入検知システム(IDS)の開発は、データ不均衡、プライバシー上の懸念、稀だが潜在的に損傷を与える可能性のあるサイバー脅威を検出する従来のモデルの限られた能力など、重要な課題に直面している。
本研究では、自己教師付き表現学習と差分プライバシー(DP)を統合し、不均衡なIoFTネットワークトラフィックの検出性能を向上させるプライバシ保存型IDSフレームワークであるPrivFlyを提案する。
本稿では,自己教師付き事前学習,特徴表現の改善,レアクラス検出の促進のためのマスク付き特徴再構成モジュールを提案する。
差分プライバシーは、モデル性能を著しく損なうことなく、機密情報を保護するために訓練中に適用される。
さらに, SHAPに基づく分析を行い, DPが特徴的重要性やモデル行動に与える影響を評価する。
ECU-IoFTデータセットの実験結果は、PrivFlyが最大98%の精度と99%のF1スコアを達成し、セキュアなIoFTシステムのプライバシーと検出性能を効果的にバランスしていることを示している。
関連論文リスト
- Adversary-Aware Private Inference over Wireless Channels [51.93574339176914]
ワイヤレスエッジデバイスにおけるAIベースのセンシングは、人工知能(AI)アプリケーションを大幅に強化する可能性がある。
機密性の高い個人情報は敵によって再構築できるため、プライバシー侵害のリスクを軽減するために特徴の変換が必要である。
本稿では,デバイスがモデルサーバに送信する前に抽出した特徴の変換を適用する,プライバシ保護型AIベースセンシングのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-10-23T13:02:14Z) - On the MIA Vulnerability Gap Between Private GANs and Diffusion Models [51.53790101362898]
GAN(Generative Adversarial Networks)と拡散モデルが高品質な画像合成のための主要なアプローチとして登場している。
差分自己生成モデルが直面するプライバシーリスクの統一的および実証的分析について述べる。
論文 参考訳(メタデータ) (2025-09-03T14:18:22Z) - CITADEL: Continual Anomaly Detection for Enhanced Learning in IoT Intrusion Detection [9.92596575679496]
IoT(Internet of Things)は、幅広いサイバー脅威に対して脆弱である。
侵入検知システム(IDS)はIoTセキュリティを強化するために広く研究されている。
我々は、良性データから堅牢な表現を抽出する自己教師付き連続学習フレームワークCITADELを提案する。
論文 参考訳(メタデータ) (2025-08-26T21:55:26Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
我々はFedE4RAG(Federated Retrieval-Augmented Generation)と呼ばれる新しいフレームワークを提案する。
FedE4RAGはクライアント側RAG検索モデルの協調トレーニングを容易にする。
モデルパラメータの保護にフェデレート学習の準同型暗号化を適用する。
論文 参考訳(メタデータ) (2025-04-27T04:26:02Z) - WeiDetect: Weibull Distribution-Based Defense against Poisoning Attacks in Federated Learning for Network Intrusion Detection Systems [23.03944479383518]
WeiDetectは、悪意のある参加者を検知するFLベースのNIDSのための2段階のサーバーサイド防御機構である。
多様な攻撃環境におけるアプローチの有効性を評価する実験を行った。
WeDetectは最先端の防衛アプローチよりも優れています。
論文 参考訳(メタデータ) (2025-04-06T05:31:24Z) - Privacy-Preserving Hybrid Ensemble Model for Network Anomaly Detection: Balancing Security and Data Protection [6.5920909061458355]
本稿では,検出精度とデータ保護の両方に対処するために,プライバシー保護技術を組み込んだハイブリッドアンサンブルモデルを提案する。
我々のモデルは、K-Nearest Neighbors(KNN)、SVM(Support Vector Machines)、XGBoost(XGBoost)、Artificial Neural Networks(ANN)など、いくつかの機械学習アルゴリズムの長所を組み合わせる。
論文 参考訳(メタデータ) (2025-02-13T06:33:16Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - TeD-SPAD: Temporal Distinctiveness for Self-supervised
Privacy-preservation for video Anomaly Detection [59.04634695294402]
人間の監視のないビデオ異常検出(VAD)は複雑なコンピュータビジョンタスクである。
VADのプライバシー漏洩により、モデルは人々の個人情報に関連する不必要なバイアスを拾い上げ、増幅することができる。
本稿では,視覚的プライベート情報を自己管理的に破壊する,プライバシーに配慮したビデオ異常検出フレームワークTeD-SPADを提案する。
論文 参考訳(メタデータ) (2023-08-21T22:42:55Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。