論文の概要: HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection
- arxiv url: http://arxiv.org/abs/2204.04254v1
- Date: Fri, 8 Apr 2022 19:06:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-16 10:18:29.010516
- Title: HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection
- Title(参考訳): HBFL: 階層型ブロックチェーンベースのIoT侵入検出のためのフェデレーション学習フレームワーク
- Authors: Mohanad Sarhan, Wai Weng Lo, Siamak Layeghy, Marius Portmann
- Abstract要約: セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The continuous strengthening of the security posture of IoT ecosystems is
vital due to the increasing number of interconnected devices and the volume of
sensitive data shared. The utilisation of Machine Learning (ML) capabilities in
the defence against IoT cyber attacks has many potential benefits. However, the
currently proposed frameworks do not consider data privacy, secure
architectures, and/or scalable deployments of IoT ecosystems. In this paper, we
propose a hierarchical blockchain-based federated learning framework to enable
secure and privacy-preserved collaborative IoT intrusion detection. We
highlight and demonstrate the importance of sharing cyber threat intelligence
among inter-organisational IoT networks to improve the model's detection
capabilities. The proposed ML-based intrusion detection framework follows a
hierarchical federated learning architecture to ensure the privacy of the
learning process and organisational data. The transactions (model updates) and
processes will run on a secure immutable ledger, and the conformance of
executed tasks will be verified by the smart contract. We have tested our
solution and demonstrated its feasibility by implementing it and evaluating the
intrusion detection performance using a key IoT data set. The outcome is a
securely designed ML-based intrusion detection system capable of detecting a
wide range of malicious activities while preserving data privacy.
- Abstract(参考訳): iotエコシステムのセキュリティ姿勢の継続的な強化は、相互接続されたデバイス数の増加と機密データ共有量のために不可欠である。
IoTサイバー攻撃に対する防御における機械学習(ML)機能の利用には、多くの潜在的なメリットがある。
しかし、現在提案されているフレームワークは、データプライバシ、セキュアなアーキテクチャ、および/またはIoTエコシステムのスケーラブルなデプロイメントを考慮していない。
本稿では,セキュアかつプライバシ保護されたコラボレーティブなIoT侵入検出を実現するための階層型ブロックチェーンベースのフェデレーション学習フレームワークを提案する。
サイバー脅威インテリジェンスを組織間iotネットワーク間で共有し,モデルの検出能力を改善することの重要性を強調し,実証する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
トランザクション(モデル更新)とプロセスはセキュアなイミュータブルな台帳上で動作し、実行されるタスクの適合性はスマートコントラクトによって検証される。
我々は,本ソリューションを検証し,その実現可能性を示し,主要なIoTデータセットを用いた侵入検出性能の評価を行った。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
関連論文リスト
- Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy-Preserving and Real-Time Threat Detection Capabilities [0.0]
従来の集中型セキュリティ手法は、IoTネットワークにおけるプライバシ保護とリアルタイム脅威検出のバランスをとるのに苦労することが多い。
本研究では,IoT環境に特化したフェデレート学習駆動型サイバーセキュリティフレームワークを提案する。
局所的に訓練されたモデルのセキュアアグリゲーションは、同型暗号を用いて達成され、機密情報を漏らさずに協調学習が可能である。
論文 参考訳(メタデータ) (2025-02-14T23:11:51Z) - Balancing Confidentiality and Transparency for Blockchain-based Process-Aware Information Systems [46.404531555921906]
機密性と透明性の両立を目的とした,ブロックチェーンベースのPAISアーキテクチャを提案する。
スマートコントラクトは公開インタラクションを制定、強制、保存し、属性ベースの暗号化技術は機密情報へのアクセス許可を指定するために採用されている。
論文 参考訳(メタデータ) (2024-12-07T20:18:36Z) - Machine Learning-Assisted Intrusion Detection for Enhancing Internet of Things Security [1.2369895513397127]
IoT(Internet of Things)に対する攻撃は、デバイス、アプリケーション、インタラクションのネットワーク化と統合化が進むにつれて増加している。
IoTデバイスを効率的にセキュアにするためには、侵入システムのリアルタイム検出が重要である。
本稿では、IoTセキュリティのための機械学習ベースの侵入検知戦略に関する最新の研究について検討する。
論文 参考訳(メタデータ) (2024-10-01T19:24:34Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
IoVネットワークにおけるインフォテインメントデータ通信の安全性の欠如は、社会的エンジニアリング攻撃の容易なアクセスポイントを意図せずに開放することができる。
特に、まずIoVネットワークでデータ通信を分類し、各データ通信のセキュリティ焦点を調べ、その後、ファイル間通信でセキュリティ保護を提供するための異なるセキュリティアーキテクチャを開発する。
論文 参考訳(メタデータ) (2024-03-29T12:01:31Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Blockchain-based Zero Trust on the Edge [5.323279718522213]
本稿では,ブロックチェーンに拡張されたゼロトラストアーキテクチャ(ZTA)に基づく新たなアプローチを提案し,セキュリティをさらに強化する。
ブロックチェーンコンポーネントは、ユーザの要求を格納するための不変データベースとして機能し、潜在的に悪意のあるユーザアクティビティを分析して識別することで、信頼性を検証するために使用される。
スマートシティにおけるその実現可能性と適用性を検証するために,テストベッド上で実施したフレームワーク,アプローチのプロセス,実験について論じる。
論文 参考訳(メタデータ) (2023-11-28T12:43:21Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
本稿では、異なる分野におけるIoTに関する法医学的およびセキュリティ上の問題についてレビューする。
ほとんどのIoTデバイスは、標準的なセキュリティ対策が欠如しているため、攻撃に対して脆弱である。
消費者のセキュリティを意識したニーズを満たすために、IoTはスマートホームシステムの開発に使用できる。
論文 参考訳(メタデータ) (2023-09-06T04:41:48Z) - A Systematic Literature Review on Blockchain Enabled Federated Learning
Framework for Internet of Vehicles [1.0499611180329804]
フェデレートラーニング(FL)は、IoVのデータプライバシとセキュリティを保護する新しいアイデアとして証明されている。
IoVに対するBC-Enabled Learningフレームワークの適用と実装に関する総合的な調査を行う。
論文 参考訳(メタデータ) (2022-03-10T07:06:04Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - On Lightweight Privacy-Preserving Collaborative Learning for Internet of
Things by Independent Random Projections [40.586736738492384]
モノのインターネット(IoT)は、より良いシステムインテリジェンスを実現する主要なデータ生成インフラストラクチャになります。
本稿では,プライバシ保護型協調学習方式の設計と実装について考察する。
好奇心強い学習コーディネータは、多くのIoTオブジェクトが提供したデータサンプルに基づいて、よりよい機械学習モデルをトレーニングする。
論文 参考訳(メタデータ) (2020-12-11T12:44:37Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
モノのインターネット(IoT)デバイスには、攻撃者によって悪用される可能性のある多くの脆弱性がある傾向がある。
異常検出のような教師なしの技術は、これらのデバイスをプラグ・アンド・プロテクトで保護するために使用することができる。
Raspberry Pi48台からなる分散IoTシミュレーションプラットフォームを提案する。
論文 参考訳(メタデータ) (2020-06-18T14:50:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。