論文の概要: The Hidden Toll of Social Media News: Causal Effects on Psychosocial Wellbeing
- arxiv url: http://arxiv.org/abs/2601.13487v1
- Date: Tue, 20 Jan 2026 00:46:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-21 22:47:23.108184
- Title: The Hidden Toll of Social Media News: Causal Effects on Psychosocial Wellbeing
- Title(参考訳): ソーシャルメディアニュースの隠れトール:心理的幸福に対する因果的影響
- Authors: Olivia Pal, Agam Goyal, Eshwar Chandrasekharan, Koustuv Saha,
- Abstract要約: この調査では、BlueSkyプラットフォーム上で26万の投稿と4500万のコメントの大規模なデータセットを活用している。
情緒的,行動的,認知的結果の観点から,心理社会的幸福度を検討した。
- 参考スコア(独自算出の注目度): 13.828701779818518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: News consumption on social media has become ubiquitous, yet how different forms of engagement shape psychosocial outcomes remains unclear. To address this gap, we leveraged a large-scale dataset of ~26M posts and ~45M comments on the BlueSky platform, and conducted a quasi-experimental study, matching 81,345 Treated users exposed to News feeds with 83,711 Control users using stratified propensity score analysis. We examined psychosocial wellbeing, in terms of affective, behavioral, and cognitive outcomes. Our findings reveal that news engagement produces systematic trade-offs: increased depression, stress, and anxiety, yet decreased loneliness and increased social interaction on the platform. Regression models reveal that News feed bookmarking is associated with greater psychosocial deterioration compared to commenting or quoting, with magnitude differences exceeding tenfold. These per-engagement effects accumulate with repeated exposure, showing significant psychosocial impacts. Our work extends theories of news effects beyond crisis-centric frameworks by demonstrating that routine consumption creates distinct psychological dynamics depending on engagement type, and bears implications for tools and interventions for mitigating the psychosocial costs of news consumption on social media.
- Abstract(参考訳): ソーシャルメディア上でのニュース消費は至るところで広まっているが、エンゲージメントの異なる形態が精神社会的成果をどう形作るかはいまだ不明である。
このギャップに対処するために、BlueSkyプラットフォーム上で26万件の投稿と45万件のコメントの大規模なデータセットを活用し、準実験を行い、81,345人のトリートユーザーと83,711人のコントロールユーザーを階層化された確率スコア分析を用いて、ニュースフィードに露出した処理ユーザをマッチングした。
情緒的,行動的,認知的結果の観点から,心理社会的幸福度を検討した。
その結果、ニュースエンゲージメントは、抑うつ、ストレス、不安の増大、孤独感の低下、プラットフォーム上での社会的相互作用の増大といった、体系的なトレードオフを生み出すことが明らかとなった。
回帰モデルでは、ニュースフィードのブックマークはコメントや引用よりも精神社会的劣化が大きいことが示され、大きさの差は10倍以上である。
これらのエンゲージメント効果は、繰り返し露光によって蓄積され、精神社会的影響が顕著である。
我々の研究は、日常的な消費がエンゲージメントの種類によって異なる心理的ダイナミクスを生み出すことを示し、ソーシャルメディア上でのニュース消費の精神社会的コストを軽減するためのツールや介入に影響を及ぼすことを実証することによって、危機中心の枠組みを超えたニュース効果の理論を拡張した。
関連論文リスト
- Mental Health Impacts of AI Companions: Triangulating Social Media Quasi-Experiments, User Perspectives, and Relational Theory [18.716972390545703]
我々は,AICCがウェルビーイングをどのように形成し,ユーザがこれらの経験をどう感じたかを検討した。
発見は、感情と悲しみの表現、読みやすさ、対人的な焦点の混合効果を示した。
私たちは、健全なバウンダリを把握し、マインドフルエンゲージメントをサポートし、依存のない開示をサポートし、表面的な関係ステージを持つAIコンパニオンに対して、設計上の意味を提供する。
論文 参考訳(メタデータ) (2025-09-26T15:47:37Z) - ReDepress: A Cognitive Framework for Detecting Depression Relapse from Social Media [48.56586765769052]
ReDepressは、リラプスに焦点を当てた最初の臨床的に検証されたソーシャルメディアデータセットである。
我々の枠組みはうつ病の認知理論に基づいており、注意バイアス、解釈バイアス、記憶バイアス、反省などの構造を取り入れている。
本研究は, 実世界のテキストデータにおける心理学的理論を検証し, 早期再発検出のための認知インフォームド・コンピューティング手法の可能性を明らかにするものである。
論文 参考訳(メタデータ) (2025-09-22T16:33:59Z) - The Psychological Impacts of Algorithmic and AI-Driven Social Media on Teenagers: A Call to Action [0.0]
本研究では,ソーシャルメディアを取り巻くメタ問題について検討する。
より親密な関係を育み、社会生活を改善する代わりに、ソーシャルメディアの根底にあるアルゴリズムと構造が個人の心理的影響に大きく貢献する。
この現象は、オンラインペルソナのキュレーション、完璧なデジタルイメージを提示するためのピアプレッシャー、そしてソーシャルメディア体験を特徴づける通知やアップデートの絶え間ない砲撃に不公平に影響を受けるティーンエイジャーの間で特に顕著である。
論文 参考訳(メタデータ) (2024-08-19T18:49:12Z) - The Role of Likes: How Online Feedback Impacts Users' Mental Health [1.0156836684627544]
オンラインフィードバックがユーザーの感情体験、社会的つながり、自尊心に与える影響を分析した。
他者からの反応がほとんどないし全くないことから,ユーザの否定的な感情を誘発するだけでなく,自己評価の低レベルも引き起こすことがわかった。
対照的に、オンラインのフィードバックを非常に肯定的に受け取り、社会的つながりの感情を誘発し、全体的な孤独を減少させる。
論文 参考訳(メタデータ) (2023-12-19T07:48:10Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSenseは、既存のソーシャルネットワーク上に信念中心のグラフを誘導するフレームワークであり、グラフベースの伝播によって社会的ダイナミクスを捉える。
本手法は,ゼロショット設定と教師あり設定の両方に対する実験的な評価において,既存の最先端技術を超えている。
論文 参考訳(メタデータ) (2023-10-20T06:17:02Z) - Mental Health Coping Stories on Social Media: A Causal-Inference Study
of Papageno Effect [8.962128900404554]
パパジェノ効果は、メディアが自殺の考えや行動の予防と緩和に肯定的な役割を担えるかに関するものである。
Twitter上でのメンタルヘルス対応ストーリーへの露出が個人に与える影響について検討した。
以上の結果から, 物語に対処することでストレスや抑うつが減少し, 表現力, 多様性, 相互作用性が向上することが示唆された。
論文 参考訳(メタデータ) (2023-02-20T10:25:28Z) - Adherence to Misinformation on Social Media Through Socio-Cognitive and
Group-Based Processes [79.79659145328856]
誤報が広まると、これはソーシャルメディア環境が誤報の付着を可能にするためである、と我々は主張する。
偏光と誤情報付着が密接な関係にあると仮定する。
論文 参考訳(メタデータ) (2022-06-30T12:34:24Z) - SSAGCN: Social Soft Attention Graph Convolution Network for Pedestrian
Trajectory Prediction [59.064925464991056]
ソーシャルソフトアテンショングラフ畳み込みネットワーク(SSAGCN)という新しい予測モデルを提案する。
SSAGCNは、歩行者間の社会的相互作用と歩行者と環境間のシーンインタラクションを同時に扱うことを目的としている。
公開データセットの実験は、SAGCNの有効性を証明し、最先端の結果を得た。
論文 参考訳(メタデータ) (2021-12-05T01:49:18Z) - Conductance and Social Capital: Modeling and Empirically Measuring
Online Social Influence [9.556358888163983]
社会的影響は私たちの日常生活に浸透し、複雑な社会現象の基礎を築いた。
オンライン社会的影響を研究する既存の文献は、いくつかの欠点に悩まされている。
この研究はギャップを埋め、モデリングとオンライン影響の実証的な定量化に3つの貢献をする。
論文 参考訳(メタデータ) (2021-10-25T01:05:49Z) - Causal Understanding of Fake News Dissemination on Social Media [50.4854427067898]
我々は、ユーザーがフェイクニュースを共有するのに、ユーザー属性が何をもたらすかを理解することが重要だと論じている。
偽ニュース拡散において、共同創設者は、本質的にユーザー属性やオンライン活動に関連する偽ニュース共有行動によって特徴づけられる。
本稿では,偽ニュース拡散における選択バイアスを軽減するための原則的アプローチを提案する。
論文 参考訳(メタデータ) (2020-10-20T19:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。