論文の概要: What Makes Low-Bit Quantization-Aware Training Work for Reasoning LLMs? A Systematic Study
- arxiv url: http://arxiv.org/abs/2601.14888v1
- Date: Wed, 21 Jan 2026 11:22:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-22 21:27:50.340969
- Title: What Makes Low-Bit Quantization-Aware Training Work for Reasoning LLMs? A Systematic Study
- Title(参考訳): LLMの推論のための低ビット量子化学習 : 体系的研究
- Authors: Keyu Lv, Manyi Zhang, Xiaobo Xia, Jingchen Ni, Shannan Yan, Xianzhi Yu, Lu Hou, Chun Yuan, Haoli Bai,
- Abstract要約: ポストトレーニング量子化(PTQ)は通常、特に低ビット設定でのタスクの推論において、大きな精度低下のコストが伴う。
本研究では,推論モデルに対する量子化認識学習(QAT)の体系的研究について述べる。
- 参考スコア(独自算出の注目度): 59.44848132298657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning models excel at complex tasks such as coding and mathematics, yet their inference is often slow and token-inefficient. To improve the inference efficiency, post-training quantization (PTQ) usually comes with the cost of large accuracy drops, especially for reasoning tasks under low-bit settings. In this study, we present a systematic empirical study of quantization-aware training (QAT) for reasoning models. Our key findings include: (1) Knowledge distillation is a robust objective for reasoning models trained via either supervised fine-tuning or reinforcement learning; (2) PTQ provides a strong initialization for QAT, improving accuracy while reducing training cost; (3) Reinforcement learning remains feasible for quantized models given a viable cold start and yields additional gains; and (4) Aligning the PTQ calibration domain with the QAT training domain accelerates convergence and often improves the final accuracy. Finally, we consolidate these findings into an optimized workflow (Reasoning-QAT), and show that it consistently outperforms state-of-the-art PTQ methods across multiple LLM backbones and reasoning datasets. For instance, on Qwen3-0.6B, it surpasses GPTQ by 44.53% on MATH-500 and consistently recovers performance in the 2-bit regime.
- Abstract(参考訳): 推論モデルはコーディングや数学のような複雑なタスクで優れているが、推論は遅く、トークン非効率であることが多い。
推論効率を改善するために、後トレーニング量子化(PTQ)は通常、特に低ビット設定下での推論タスクにおいて、大きな精度低下のコストが伴う。
本研究では,推論モデルに対する量子化認識学習(QAT)の体系的研究について述べる。
その結果,(1) 知識蒸留は, 教師付き微調整あるいは強化学習によって訓練されたモデルの推論のための頑健な目的であり, (2) PTQはQATの強力な初期化を提供し, トレーニングコストを低減しながら精度を向上させる。
最後に、これらの知見を最適化されたワークフロー(Reasoning-QAT)に集約し、複数のLCMバックボーンと推論データセットで、最先端のPTQメソッドを一貫して上回ることを示す。
例えば Qwen3-0.6B では、MATH-500 では GPTQ を 44.53% 上回り、2ビット方式では一貫して性能を回復している。
関連論文リスト
- CAGE: Curvature-Aware Gradient Estimation For Accurate Quantization-Aware Training [73.46600457802693]
本稿では,量子化による損失に対応する新しい手法を提案する。
CAGEは、同様の計算コストで、精度の観点から最先端の手法を大幅に改善する。
LlamaモデルのQAT事前トレーニングでは、CAGEは4ビット(W4A4)で達成された精度と事前のベストメソッドとを一致させる。
論文 参考訳(メタデータ) (2025-10-21T16:33:57Z) - Beyond Outliers: A Study of Optimizers Under Quantization [82.75879062804955]
量子化下でのモデルロバスト性に対する選択の影響について検討する。
モデルの性能が、異なるベースラインでトレーニングした場合にどのように低下するかを評価する。
異なるパラメータによる量子化対応トレーニングのスケーリング法則を導出する。
論文 参考訳(メタデータ) (2025-09-27T21:15:22Z) - End-to-End On-Device Quantization-Aware Training for LLMs at Inference Cost [53.25965863436039]
量子化対応トレーニング(QAT)は、より原則化されたソリューションを提供するが、バックプロパゲーションに依存しているため、メモリコストは禁じられている。
重み付けとアクティベーション量子化の両方をサポートするゼロオーダー最適化ベースのQATフレームワークであるZeroQATを提案する。
実験の結果、ZeroQATはPTQとQATのベースラインを一貫して上回り、メモリは大幅に削減された。
論文 参考訳(メタデータ) (2025-08-21T01:18:27Z) - LLMC: Benchmarking Large Language Model Quantization with a Versatile Compression Toolkit [55.73370804397226]
鍵圧縮技術である量子化は、大きな言語モデルを圧縮し、加速することにより、これらの要求を効果的に軽減することができる。
本稿では,プラグアンドプレイ圧縮ツールキットであるLLMCについて,量子化の影響を公平かつ体系的に検討する。
この汎用ツールキットによって、我々のベンチマークはキャリブレーションデータ、アルゴリズム(3つの戦略)、データフォーマットの3つの重要な側面をカバーしています。
論文 参考訳(メタデータ) (2024-05-09T11:49:05Z) - L4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large Language Models [5.304907804008533]
量子化学習(QAT)とローランド適応(LoRA)を統合したL4Qを提案する。
メモリ最適化レイヤ設計を採用することで、L4QはQATのメモリオーバーヘッドを大幅に削減し、トレーニングコストはLoRAに匹敵する。
この量子化法と微調整法の組み合わせにより精度が向上することを示した。
論文 参考訳(メタデータ) (2024-02-07T14:35:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。