論文の概要: Low-Dimensional Adaptation of Rectified Flow: A New Perspective through the Lens of Diffusion and Stochastic Localization
- arxiv url: http://arxiv.org/abs/2601.15500v1
- Date: Wed, 21 Jan 2026 22:09:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-23 21:37:20.430846
- Title: Low-Dimensional Adaptation of Rectified Flow: A New Perspective through the Lens of Diffusion and Stochastic Localization
- Title(参考訳): 整流流れの低次元適応:拡散レンズと確率的局在の新しい視点
- Authors: Saptarshi Roy, Alessandro Rinaldo, Purnamrita Sarkar,
- Abstract要約: 整流流(RF)は、その生成効率と最先端の性能からかなりの人気を得ている。
本稿では,RFがターゲット分布の支持の内在的低次元性に自動的に適応し,サンプリングを高速化する程度について検討する。
時間分割方式を慎重に設計し,十分な正確なドリフト推定を行うことで,RFサンプリング器はオーダーO(k/varepsilon)$の複雑さを享受できることを示す。
- 参考スコア(独自算出の注目度): 59.04314685837778
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, Rectified flow (RF) has gained considerable popularity largely due to its generation efficiency and state-of-the-art performance. In this paper, we investigate the degree to which RF automatically adapts to the intrinsic low dimensionality of the support of the target distribution to accelerate sampling. We show that, using a carefully designed choice of the time-discretization scheme and with sufficiently accurate drift estimates, the RF sampler enjoys an iteration complexity of order $O(k/\varepsilon)$ (up to log factors), where $\varepsilon$ is the precision in total variation distance and $k$ is the intrinsic dimension of the target distribution. In addition, we show that the denoising diffusion probabilistic model (DDPM) procedure is equivalent to a stochastic version of RF by establishing a novel connection between these processes and stochastic localization. Building on this connection, we further design a stochastic RF sampler that also adapts to the low-dimensionality of the target distribution under milder requirements on the accuracy of the drift estimates, and also with a specific time schedule. We illustrate with simulations on the synthetic data and text-to-image data experiments the improved performance of the proposed samplers implementing the newly designed time-discretization schedules.
- Abstract(参考訳): 近年では、その生成効率と最先端の性能により、RF(Rectified Flow)がかなり人気を博している。
本稿では,RFがターゲット分布の支持の内在的低次元性に自動的に適応し,サンプリングを高速化する程度について検討する。
時間分散化スキームを慎重に設計し、十分な正確なドリフト推定を行うことで、RFサンプリング器はオーダー$O(k/\varepsilon)$(ログファクターまで)の反復複雑さを享受し、$\varepsilon$は全変動距離の精度、$k$は目標分布の固有次元であることを示す。
さらに,これらのプロセスと確率的局所化の新たな関連性を確立することにより,DDPM法はRFの確率的バージョンと等価であることを示す。
この接続に基づいて、ドリフト推定の精度と特定の時間スケジュールに基づいて、より穏やかな要求の下で目標分布の低次元性にも適応する確率的RFサンプリング器を設計する。
本稿では, 合成データとテキスト・ツー・イメージデータ実験のシミュレーションにより, 新たに設計した時間分割スケジュールを実装したサンプル装置の性能改善について述べる。
関連論文リスト
- FreqFlow: Long-term forecasting using lightweight flow matching [3.5235875824926346]
本稿では、周波数領域における条件付きフローマッチングを利用して決定論的MSS予測を行う新しいフレームワークであるFreqFlowを紹介する。
FreqFlowは予測問題をスペクトル領域に変換し、振幅と位相シフトをモデル化する。
実世界のトラフィック速度、ボリューム、フローデータセットに関する実験は、FreqFlowが最先端の予測性能を達成することを実証している。
論文 参考訳(メタデータ) (2025-11-20T14:50:13Z) - A-FloPS: Accelerating Diffusion Sampling with Adaptive Flow Path Sampler [21.134678093577193]
A-FloPSは、フローベースの生成モデルのための原則化された、トレーニング不要のフレームワークである。
A-FloPSは, 試料品質と効率の両面において, 最先端のトレーニング不要サンプリング器より一貫して優れていることを示す。
5ドルの関数評価で、A-FloPSはFIDを大幅に低くし、よりシャープでコヒーレントな画像を生成する。
論文 参考訳(メタデータ) (2025-08-22T13:28:16Z) - Inference-Time Scaling of Diffusion Language Models with Particle Gibbs Sampling [70.8832906871441]
我々は、モデルを再訓練することなく、所望の報酬に向けて世代を操る方法を研究する。
従来の手法では、通常は1つの認知軌道内でサンプリングやフィルタを行い、軌道レベルの改善なしに報酬をステップバイステップで最適化する。
本稿では,拡散言語モデル(PG-DLM)の粒子ギブスサンプリングについて紹介する。
論文 参考訳(メタデータ) (2025-07-11T08:00:47Z) - Adaptive Deadline and Batch Layered Synchronized Federated Learning [66.93447103966439]
フェデレートラーニング(FL)は、データプライバシを保持しながら、分散エッジデバイス間で協調的なモデルトレーニングを可能にする。
我々は,レイヤワイドアグリゲーションのために,ラウンド単位の期限とユーザ固有のバッチサイズを共同で最適化する新しいフレームワークADEL-FLを提案する。
論文 参考訳(メタデータ) (2025-05-29T19:59:18Z) - Score-Optimal Diffusion Schedules [29.062842062257918]
高品質なサンプルを得るためには、適切な離散化スケジュールが不可欠である。
本稿では,最適な離散化スケジュールを適応的に選択するための新しいアルゴリズムを提案する。
学習したスケジュールは、これまで手動検索でのみ発見されていたパフォーマンススケジュールを復元する。
論文 参考訳(メタデータ) (2024-12-10T19:26:51Z) - Denoising diffusion probabilistic models are optimally adaptive to unknown low dimensionality [21.10158431913811]
DDPMは,本質的な低次元データの自動利用により,サンプリングスピードアップを実現することができるかを検討する。
DDPMの繰り返し複雑性は$k$とほぼ線形にスケールすることが証明され、KL分散を用いて分布の相違を測定するのに最適である。
論文 参考訳(メタデータ) (2024-10-24T14:36:12Z) - On the Wasserstein Convergence and Straightness of Rectified Flow [54.580605276017096]
Rectified Flow (RF) は、ノイズからデータへの直流軌跡の学習を目的とした生成モデルである。
RFのサンプリング分布とターゲット分布とのワッサーシュタイン距離に関する理論的解析を行った。
本稿では,従来の経験的知見と一致した1-RFの特異性と直線性を保証する一般的な条件について述べる。
論文 参考訳(メタデータ) (2024-10-19T02:36:11Z) - A Simple Early Exiting Framework for Accelerated Sampling in Diffusion Models [14.859580045688487]
拡散モデルの現実的なボトルネックはサンプリング速度である。
スコア推定に必要な計算を適応的に割り当てる新しいフレームワークを提案する。
本研究では,画像品質を損なうことなく,拡散モデルのサンプリングスループットを大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-08-12T05:33:45Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。