論文の概要: Neural Nonlinear Shrinkage of Covariance Matrices for Minimum Variance Portfolio Optimization
- arxiv url: http://arxiv.org/abs/2601.15597v1
- Date: Thu, 22 Jan 2026 02:44:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-23 21:37:20.474537
- Title: Neural Nonlinear Shrinkage of Covariance Matrices for Minimum Variance Portfolio Optimization
- Title(参考訳): 最小分散ポートフォリオ最適化のための共分散行列の非線形収縮
- Authors: Liusha Yang, Siqi Zhao, Shuqi Chai,
- Abstract要約: 統計的推定と機械学習を統合するハイブリッドアプローチである。
Standard & Poor's 500 Index (S&P500) による毎日の株価リターンに関する実証的な結果から,提案手法が常に低いサンプル化リスクを達成していることが示された。
- 参考スコア(独自算出の注目度): 1.2001699611848735
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a neural network-based nonlinear shrinkage estimator of covariance matrices for the purpose of minimum variance portfolio optimization. It is a hybrid approach that integrates statistical estimation with machine learning. Starting from the Ledoit-Wolf (LW) shrinkage estimator, we decompose the LW covariance matrix into its eigenvalues and eigenvectors, and apply a lightweight transformer-based neural network to learn a nonlinear eigenvalue shrinkage function. Trained with portfolio risk as the loss function, the resulting precision matrix (the inverse covariance matrix) estimator directly targets portfolio risk minimization. By conditioning on the sample-to-dimension ratio, the approach remains scalable across different sample sizes and asset universes. Empirical results on stock daily returns from Standard & Poor's 500 Index (S&P500) demonstrate that the proposed method consistently achieves lower out-of-sample realized risk than benchmark approaches. This highlights the promise of integrating structural statistical models with data-driven learning.
- Abstract(参考訳): 本稿では、最小分散ポートフォリオ最適化を目的とした共分散行列のニューラルネットワークに基づく非線形縮退推定器を提案する。
統計的推定と機械学習を統合するハイブリッドアプローチである。
Ledoit-Wolf(LW)縮退推定器から、LW共分散行列を固有値と固有ベクトルに分解し、非線形固有値縮退関数の学習に軽量トランスフォーマーベースニューラルネットワークを適用する。
損失関数としてポートフォリオリスクを訓練した結果の精度行列(逆共分散行列)推定器は、ポートフォリオリスクの最小化を直接ターゲットとする。
サンプル対次元比を条件にすると、このアプローチは異なるサンプルサイズと資産宇宙にわたってスケーラブルである。
Standard & Poor's 500 Index (S&P500) による毎日の株価リターンに関する実証的な結果は、提案手法がベンチマーク手法よりも低いサンプル化リスクを一貫して達成していることを示している。
これは構造統計モデルとデータ駆動学習を統合するという約束を強調している。
関連論文リスト
- A Simplified Analysis of SGD for Linear Regression with Weight Averaging [64.2393952273612]
最近の研究は、定常学習率を用いた線形回帰におけるSGD最適化のためのシャープレートを提供する。
簡単な線形代数ツールを用いて,2021ベニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグニグナグニグニグニグニグニグニグニグニグニグニグネグニグニグニグニグネグニグニグネグニ
我々の研究は線形回帰の勾配勾配を非常に容易に解析し、ミニバッチと学習率のスケジューリングのさらなる分析に役立てることができると信じている。
論文 参考訳(メタデータ) (2025-06-18T15:10:38Z) - On the design-dependent suboptimality of the Lasso [27.970033039287884]
最小特異値が小さい場合、ラッソ推定器は、確実に最小値であることを示す。
我々の下限は、ラッソの全ての形態のまばらな統計的最適性を妨げるのに十分強い。
論文 参考訳(メタデータ) (2024-02-01T07:01:54Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
ラベルなしデータセットを、効率的な自己教師付き学習(SSL)のための小さな合成サンプル群に蒸留する新しい問題を提案する。
両レベル最適化におけるSSL目標に対する合成サンプルの勾配は、データ拡張やマスキングから生じるランダム性から、テキストバイアスを受けていることを最初に証明する。
転送学習を含む様々な応用における本手法の有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-10-10T10:48:52Z) - Forecasting Large Realized Covariance Matrices: The Benefits of Factor
Models and Shrinkage [1.0323063834827415]
我々は、標準のファームレベル因子を用いてリターン共分散行列を分解し、残差共分散行列のセクシャル制限を用いる。
提案手法は,標準ベンチマークと比較して精度が向上し,最小分散ポートフォリオの推定精度が向上する。
論文 参考訳(メタデータ) (2023-03-22T16:38:22Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Deep Learning Based Residuals in Non-linear Factor Models: Precision
Matrix Estimation of Returns with Low Signal-to-Noise Ratio [0.0]
本稿では,大規模なポートフォリオにおける資産返却の精度行列に対する一貫した推定器と収束率を紹介する。
金融市場に典型的な低信号対雑音比環境においても, 評価は引き続き有効である。
論文 参考訳(メタデータ) (2022-09-09T20:29:54Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。