論文の概要: Covariance Estimation for Matrix-valued Data
- arxiv url: http://arxiv.org/abs/2004.05281v2
- Date: Mon, 18 Apr 2022 19:39:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 12:59:17.516836
- Title: Covariance Estimation for Matrix-valued Data
- Title(参考訳): 行列値データの共分散推定
- Authors: Yichi Zhang, Weining Shen, Dehan Kong
- Abstract要約: 本研究では,高次元行列データに対する分布自由正規化共分散推定法を提案する。
我々は、バンド可能な共分散を推定するための統一的な枠組みを定式化し、ランク1の制約のないクロネッカー積近似に基づく効率的なアルゴリズムを導入する。
格子状温度異常データセットとS&P 500ストックデータ解析によるシミュレーションと実応用を用いて,本手法の優れた有限サンプル性能を実証した。
- 参考スコア(独自算出の注目度): 9.739753590548796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Covariance estimation for matrix-valued data has received an increasing
interest in applications. Unlike previous works that rely heavily on matrix
normal distribution assumption and the requirement of fixed matrix size, we
propose a class of distribution-free regularized covariance estimation methods
for high-dimensional matrix data under a separability condition and a bandable
covariance structure. Under these conditions, the original covariance matrix is
decomposed into a Kronecker product of two bandable small covariance matrices
representing the variability over row and column directions. We formulate a
unified framework for estimating bandable covariance, and introduce an
efficient algorithm based on rank one unconstrained Kronecker product
approximation. The convergence rates of the proposed estimators are
established, and the derived minimax lower bound shows our proposed estimator
is rate-optimal under certain divergence regimes of matrix size. We further
introduce a class of robust covariance estimators and provide theoretical
guarantees to deal with heavy-tailed data. We demonstrate the superior
finite-sample performance of our methods using simulations and real
applications from a gridded temperature anomalies dataset and a S&P 500 stock
data analysis.
- Abstract(参考訳): 行列値データの共分散推定はアプリケーションへの関心が高まっている。
行列正規分布の仮定や固定行列サイズの要件に大きく依存する従来の研究とは異なり、分離性条件下での高次元行列データに対する分布自由正規化共分散推定法とバンド状共分散構造を提案する。
これらの条件下で、元の共分散行列は、列および列方向の変動性を表す2つの有バンド性小共分散行列からなるクロネッカー積に分解される。
我々は,バンドブル共分散を推定するための統一フレームワークを定式化し,階数1非拘束クロネッカー積近似に基づく効率的なアルゴリズムを提案する。
提案する推定器の収束率を定式化し, 導出したミニマックス下限は, 行列サイズの発散条件下ではレートオプティマイトであることを示す。
さらに,頑健な共分散推定器のクラスを導入し,重み付きデータを扱うための理論的保証を提供する。
格子状温度異常データセットとS&P 500ストックデータ解析によるシミュレーションと実応用を用いて,本手法の優れた有限サンプル性能を示す。
関連論文リスト
- A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry [0.0]
対称正定値多様体の対数ユークリッド幾何学を利用する共分散行列の多値推定器を導入する。
固定予算が与えられた推定器の平均二乗誤差を最小化する最適サンプル割り当て方式を開発した。
物理アプリケーションからのデータによるアプローチの評価は、ベンチマークと比較すると、より正確なメトリック学習と1桁以上のスピードアップを示している。
論文 参考訳(メタデータ) (2023-01-31T16:33:46Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - On confidence intervals for precision matrices and the
eigendecomposition of covariance matrices [20.20416580970697]
本稿では,固定次元の共分散行列の固有ベクトルの個々のエントリに対する信頼性境界の計算に挑戦する。
逆共分散行列、いわゆる精度行列の成分を束縛する手法を導出する。
これらの結果の応用として,精度行列の非ゼロ値のテストを可能にする新しい統計テストを示す。
論文 参考訳(メタデータ) (2022-08-25T10:12:53Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
非負行列ファクタリゼーションの逆学習版を検討する。
我々の定式化では、攻撃者は与えられたデータ行列に有界ノルムの任意の行列を追加する。
辞書と係数行列を最適化するために, 逆学習に触発された効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2021-04-10T13:13:17Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
帰納バイアスは 経験的に過剰フィットを防げる中心的存在です
この研究は、この問題を最も基本的な設定として考慮している: 線形回帰に対する定数ステップサイズ SGD。
我々は、(正規化されていない)SGDで得られるアルゴリズム正則化と、通常の最小二乗よりも多くの顕著な違いを反映する。
論文 参考訳(メタデータ) (2021-03-23T17:15:53Z) - Effective Data-aware Covariance Estimator from Compressed Data [63.16042585506435]
本研究では,データ対応重み付きサンプリングベース共分散行列推定器,すなわち DACE を提案し,非バイアス共分散行列推定を行う。
我々は、DACEの優れた性能を示すために、合成データセットと実世界のデータセットの両方で広範な実験を行う。
論文 参考訳(メタデータ) (2020-10-10T10:10:28Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Fitting Laplacian Regularized Stratified Gaussian Models [0.0]
データから複数の関連するゼロ平均ガウス分布を共同推定する問題を考察する。
本稿では,大規模な問題にスケールする分散手法を提案するとともに,金融,レーダ信号処理,天気予報などの手法の有効性について述べる。
論文 参考訳(メタデータ) (2020-05-04T18:00:59Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Sparse Covariance Estimation in Logit Mixture Models [0.0]
本稿では,ロジット混合モデルにおけるランダム係数のスパース共分散行列を推定するための新しいデータ駆動手法を提案する。
我々の目的は、共分散を推定する相関係数の最適部分集合を見つけることである。
論文 参考訳(メタデータ) (2020-01-14T20:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。