論文の概要: Out-of-Distribution Detection Based on Total Variation Estimation
- arxiv url: http://arxiv.org/abs/2601.15867v1
- Date: Thu, 22 Jan 2026 11:15:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-23 21:37:20.582588
- Title: Out-of-Distribution Detection Based on Total Variation Estimation
- Title(参考訳): 総変量推定に基づくアウト・オブ・ディストリビューション検出
- Authors: Dabiao Ma, Zhiba Su, Jian Yang, Haojun Fei,
- Abstract要約: 本稿では,実運用における潜在的分散シフトに対する機械学習モデル配置の安全性を確保するための新しいアプローチ,Total Variation Out-of-Distribution (TV-OOD) 検出手法を提案する。
TV-OODは、トータル変分ネットワーク推定器を利用して、全変分への各入力の寄与を計算することで、既存の方法を改善する。
この手法の有効性は、様々なモデルとデータセットでテストされ、すべての評価指標における最先端のアウト・オブ・ディストリビューション検出技術によって達成されたものと同等か優れている画像分類タスクにおいて、一貫して結果が得られた。
- 参考スコア(独自算出の注目度): 13.688266962656533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel approach to securing machine learning model deployments against potential distribution shifts in practical applications, the Total Variation Out-of-Distribution (TV-OOD) detection method. Existing methods have produced satisfactory results, but TV-OOD improves upon these by leveraging the Total Variation Network Estimator to calculate each input's contribution to the overall total variation. By defining this as the total variation score, TV-OOD discriminates between in- and out-of-distribution data. The method's efficacy was tested across a range of models and datasets, consistently yielding results in image classification tasks that were either comparable or superior to those achieved by leading-edge out-of-distribution detection techniques across all evaluation metrics.
- Abstract(参考訳): 本稿では,実運用における潜在的分散シフトに対する機械学習モデル配置の安全性を確保するための新しいアプローチ,Total Variation Out-of-Distribution (TV-OOD) 検出手法を提案する。
既存の手法では満足な結果が得られたが、TV-OODでは、トータル変分ネットワーク推定器を利用して、全体の変分に対する各入力の寄与を計算することにより、これらの結果を改善する。
これを総変量スコアとして定義することにより、TV-OODは分布内データと分布外データとを判別する。
この手法の有効性は、様々なモデルとデータセットでテストされ、すべての評価指標における最先端のアウト・オブ・ディストリビューション検出技術によって達成されたものと同等か優れている画像分類タスクにおいて、一貫して結果が得られた。
関連論文リスト
- Practical Improvements of A/B Testing with Off-Policy Estimation [51.25970890274447]
従来の手法よりも分散度を低くする非バイアスのオフ・ポリティクス推定器のファミリーを導入する。
提案手法の有効性と実用性を理論的に検証した。
論文 参考訳(メタデータ) (2025-06-12T13:11:01Z) - On the Interconnections of Calibration, Quantification, and Classifier Accuracy Prediction under Dataset Shift [58.91436551466064]
本稿では,データセットシフト条件下でのキャリブレーションと定量化の3つの基本問題間の相互接続について検討する。
これらのタスクのいずれか1つに対するオラクルへのアクセスは、他の2つのタスクの解決を可能にすることを示す。
本稿では,他の分野から借用した高度に確立された手法の直接適応に基づく各問題に対する新しい手法を提案する。
論文 参考訳(メタデータ) (2025-05-16T15:42:55Z) - Combine and Conquer: A Meta-Analysis on Data Shift and Out-of-Distribution Detection [30.377446496559635]
本稿では,アウト・オブ・ディストリビューション(OOD)検出スコアをシームレスに組み合わせるための普遍的アプローチを提案する。
我々のフレームワークは、検出スコアにおける将来の発展にとって容易であり、この文脈で意思決定境界を結合する最初の手段である。
論文 参考訳(メタデータ) (2024-06-23T08:16:44Z) - Toward a Realistic Benchmark for Out-of-Distribution Detection [3.8038269045375515]
我々は ImageNet と Places365 に基づく OOD 検出のための総合ベンチマークを導入する。
様々な特性を持つベンチマークを生成するために、どのクラスを配布中と考えるべきかを決定するために、いくつかのテクニックが使える。
論文 参考訳(メタデータ) (2024-04-16T11:29:43Z) - Multiply Robust Estimation for Local Distribution Shifts with Multiple Domains [9.429772474335122]
我々は、全人口の複数のセグメントにまたがってデータ分布が変化するシナリオに焦点を当てる。
そこで本研究では,各セグメントのモデル性能を改善するために,二段階多重ロバスト推定法を提案する。
本手法は,市販の機械学習モデルを用いて実装されるように設計されている。
論文 参考訳(メタデータ) (2024-02-21T22:01:10Z) - Anomaly Detection under Distribution Shift [24.094884041252044]
異常検出(AD)は、通常のトレーニングサンプルのセットからパターンを学習し、テストデータの異常サンプルを特定することを目的とした、重要な機械学習タスクである。
既存のAD研究の多くは、トレーニングデータとテストデータは同一のデータ分布から引き出されると仮定しているが、テストデータは大きな分散シフトを持つ可能性がある。
トレーニングおよび推論段階のOOD標準試料の分布ギャップを最小化することにより, 多様な分布シフトに対する新しいロバストADアプローチを導入する。
論文 参考訳(メタデータ) (2023-03-24T07:39:08Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
本研究の目的は,OOD検出手法の暗黙的なスコアリング機能を識別すると同時に,共通の目的を認識することである。
内分布と外分布の2値差はOOD検出問題のいくつかの異なる定式化と等価であることを示す。
また, 外乱露光で使用される信頼損失は, 理論上最適のスコアリング関数と非自明な方法で異なる暗黙的なスコアリング関数を持つことを示した。
論文 参考訳(メタデータ) (2022-06-20T16:32:49Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
論文 参考訳(メタデータ) (2022-05-20T20:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。