論文の概要: A Quantum Genetic Algorithm-Enhanced Self-Supervised Intrusion Detection System for Wireless Sensor Networks in the Internet of Things
- arxiv url: http://arxiv.org/abs/2509.03744v1
- Date: Wed, 03 Sep 2025 22:02:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-05 20:21:09.98641
- Title: A Quantum Genetic Algorithm-Enhanced Self-Supervised Intrusion Detection System for Wireless Sensor Networks in the Internet of Things
- Title(参考訳): モノのインターネットにおける無線センサネットワークのための量子遺伝的アルゴリズムによる自己監督型侵入検知システム
- Authors: Hamid Barati,
- Abstract要約: 本稿では、量子遺伝的アルゴリズム(QGA)と自己監視学習(SSL)を統合した新しいハイブリッド侵入検知システムを提案する。
提案するフレームワークは、IoT侵入データセットのベンチマークに基づいて評価され、検出精度、偽陽性率、計算効率の点で優れた性能を示す。
- 参考スコア(独自算出の注目度): 1.049126606580198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid expansion of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs) has significantly increased the attack surface of such systems, making them vulnerable to a wide range of cyber threats. Traditional Intrusion Detection Systems (IDS) often fail to meet the stringent requirements of resource-constrained IoT environments due to their high computational cost and reliance on large labeled datasets. To address these challenges, this paper proposes a novel hybrid Intrusion Detection System that integrates a Quantum Genetic Algorithm (QGA) with Self-Supervised Learning (SSL). The QGA leverages quantum-inspired evolutionary operators to optimize feature selection and fine-tune model parameters, ensuring lightweight yet efficient detection in resource-limited networks. Meanwhile, SSL enables the system to learn robust representations from unlabeled data, thereby reducing dependency on manually labeled training sets. The proposed framework is evaluated on benchmark IoT intrusion datasets, demonstrating superior performance in terms of detection accuracy, false positive rate, and computational efficiency compared to conventional evolutionary and deep learning-based IDS models. The results highlight the potential of combining quantum-inspired optimization with self-supervised paradigms to design next-generation intrusion detection solutions for IoT and WSN environments.
- Abstract(参考訳): IoT(Internet of Things)とWSN(Wireless Sensor Networks)の急速な拡張により、これらのシステムの攻撃面が大幅に増加し、広範囲のサイバー脅威に対して脆弱になった。
従来の侵入検知システム(IDS)は、高い計算コストと大きなラベル付きデータセットに依存するため、リソース制約されたIoT環境の厳しい要件を満たすことができないことが多い。
そこで本研究では,量子遺伝的アルゴリズム(QGA)と自己監視学習(SSL)を統合した新しいハイブリッド侵入検知システムを提案する。
QGAは、量子にインスパイアされた進化演算子を利用して特徴選択と微調整モデルパラメータを最適化し、リソース制限ネットワークにおける軽量かつ効率的な検出を確実にする。
一方、SSLにより、システムはラベルのないデータから堅牢な表現を学習し、手動でラベル付けされたトレーニングセットへの依存を減らすことができる。
提案フレームワークは,従来の進化的および深層学習に基づくIDSモデルと比較して,検出精度,偽陽性率,計算効率の点で優れた性能を示す。
この結果は、量子インスパイアされた最適化と自己教師付きパラダイムを組み合わせることで、IoTおよびWSN環境のための次世代の侵入検出ソリューションを設計する可能性を強調している。
関連論文リスト
- Network Anomaly Detection for IoT Using Hyperdimensional Computing on NSL-KDD [0.2399911126932527]
本稿では,超次元計算(HDC)技術を用いたネットワーク異常検出手法を提案する。
提案手法は,大規模データ処理におけるHDCの効率を利用して,未知の攻撃パターンと未知の攻撃パターンを識別する。
このモデルはKDDTrain+サブセットで91.55%の精度を達成し、従来のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2025-03-04T22:19:26Z) - Hybrid Machine Learning Models for Intrusion Detection in IoT: Leveraging a Real-World IoT Dataset [0.0]
これらの脅威を緩和するためには、侵入検知システム(IDS)が不可欠である。
機械学習(ML)の最近の進歩は、改善のための有望な道を提供する。
本研究は、いくつかのスタンドアロンMLモデルを組み合わせたハイブリッドアプローチを探求する。
論文 参考訳(メタデータ) (2025-02-17T23:41:10Z) - Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
従来の機械学習ベースの侵入検知システム(ML-IDS)にはラベル付きデータの要求のような制限がある。
AutoEncodersやGenerative Adversarial Networks (GAN)のような最近の教師なしML-IDSアプローチは代替ソリューションを提供する。
本稿では,分散データセットの共通表現を学習するフェデレーション型非教師付き異常検出フレームワークであるFedPCAを提案する。
論文 参考訳(メタデータ) (2024-07-10T07:23:21Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
侵入検知システム(IDS)は、従来のコンピュータシステムにおけるサイバー攻撃の検出と防止に重要な役割を果たしてきた。
Internet of Things(IoT)デバイスで利用可能な限られた計算リソースは、従来のコンピューティングベースのIDSのデプロイを困難にしている。
軽量CNNと双方向LSTM(BiLSTM)を組み合わせたハイブリッドCNNアーキテクチャを提案し,UNSW-NB15データセット上でのIDSの性能向上を図る。
論文 参考訳(メタデータ) (2024-06-04T20:36:21Z) - Enhancing IoT Security: A Novel Feature Engineering Approach for ML-Based Intrusion Detection Systems [1.749521391198341]
日々の生活にIoT(Internet of Things)アプリケーションを統合することで、データトラフィックが急増し、重大なセキュリティ上の問題が発生しています。
本稿では、コストと精度のバランスの取れたトレードオフを見つけるための新しい手法を導入することにより、エッジレベルでのMLベースのIDSの有効性を向上させることに焦点を当てる。
論文 参考訳(メタデータ) (2024-04-29T21:26:18Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Signal Detection in MIMO Systems with Hardware Imperfections: Message
Passing on Neural Networks [101.59367762974371]
本稿では,Multi-Input-multiple-output (MIMO)通信システムにおける信号検出について検討する。
パイロット信号が限られているディープニューラルネットワーク(DNN)のトレーニングは困難であり、実用化を妨げている。
我々は、ユニタリ近似メッセージパッシング(UAMP)アルゴリズムを利用して、効率的なメッセージパッシングに基づくベイズ信号検出器を設計する。
論文 参考訳(メタデータ) (2022-10-08T04:32:58Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。