論文の概要: LLM-Assisted Logic Rule Learning: Scaling Human Expertise for Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2601.19255v1
- Date: Tue, 27 Jan 2026 06:37:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-28 15:26:51.20503
- Title: LLM-Assisted Logic Rule Learning: Scaling Human Expertise for Time Series Anomaly Detection
- Title(参考訳): LLM支援論理ルール学習:時系列異常検出のための人間の専門知識のスケーリング
- Authors: Haoting Zhang, Shekhar Jain,
- Abstract要約: 時系列異常検出はサプライチェーン管理において積極的な操作を行う上で重要である。
本稿では,大規模言語モデル(LLM)を利用して,人間の専門知識を解釈可能な論理ベースのルールに体系的にエンコードするフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.9740025522928777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series anomaly detection is critical for supply chain management to take proactive operations, but faces challenges: classical unsupervised anomaly detection based on exploiting data patterns often yields results misaligned with business requirements and domain knowledge, while manual expert analysis cannot scale to millions of products in the supply chain. We propose a framework that leverages large language models (LLMs) to systematically encode human expertise into interpretable, logic-based rules for detecting anomaly patterns in supply chain time series data. Our approach operates in three stages: 1) LLM-based labeling of training data instructed by domain knowledge, 2) automated generation and iterative improvements of symbolic rules through LLM-driven optimization, and 3) rule augmentation with business-relevant anomaly categories supported by LLMs to enhance interpretability. The experiment results showcase that our approach outperforms the unsupervised learning methods in both detection accuracy and interpretability. Furthermore, compared to direct LLM deployment for time series anomaly detection, our approach provides consistent, deterministic results with low computational latency and cost, making it ideal for production deployment. The proposed framework thus demonstrates how LLMs can bridge the gap between scalable automation and expert-driven decision-making in operational settings.
- Abstract(参考訳): 時系列異常検出はサプライチェーン管理にとって重要な課題だが、データパターンを悪用した古典的な教師なし異常検出は、しばしばビジネス要件やドメイン知識と不一致の結果をもたらすが、手動のエキスパート分析はサプライチェーン内の数百万の製品にスケールできない。
本稿では,大規模言語モデル(LLM)を利用して,サプライチェーン時系列データ中の異常パターンを検出するための論理に基づく解釈可能なルールに,人間の専門知識を体系的に符号化するフレームワークを提案する。
私たちのアプローチは3段階に分かれています。
1)LLMに基づくドメイン知識によるトレーニングデータのラベル付け
2) LLM駆動最適化による記号規則の自動生成と反復的改善
3) 解釈可能性を高めるため, LLMが支援するビジネス関連異常カテゴリーによるルール強化。
実験の結果,本手法は検出精度と解釈可能性の両方において教師なし学習法よりも優れていた。
さらに, 時系列異常検出のための直接LLM配置と比較して, 計算待ち時間とコストが低く, 一貫性があり, 決定論的な結果が得られるので, 実運用に最適である。
提案するフレームワークは,スケーラブルな自動化と運用環境における専門家主導による意思決定のギャップをLLMがいかに埋めるかを実証する。
関連論文リスト
- LLM-Enhanced Reinforcement Learning for Time Series Anomaly Detection [1.1852406625172216]
時系列異常検出は、しばしばスパースラベル、複雑な時間パターン、高価な専門家アノテーションに悩まされる。
本稿では,LL(Reinforcement Learning),VAE(Variational Autoencoder)の強化された動的報酬スケーリング,ラベル伝搬によるアクティブラーニングを併用した,LLM(Large Language Model)に基づく報酬形成機能の統合フレームワークを提案する。
論文 参考訳(メタデータ) (2026-01-05T19:33:30Z) - LLM as an Algorithmist: Enhancing Anomaly Detectors via Programmatic Synthesis [40.82779720776548]
大きな言語モデル(LLM)は驚くべき推論能力を示している。
我々のフレームワークは、LLMを「データプロセッサ」から「アルゴリズム」に再配置する。
論文 参考訳(メタデータ) (2025-10-04T19:00:51Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
検証可能な報酬付き大規模強化学習(RLVR)は,大規模言語モデル(LLM)を単一ターン推論タスクに活用する効果を実証している。
現在のRLアルゴリズムは、モデル固有のロングホライゾン推論能力と、マルチターンツールインタラクションにおけるその習熟性のバランスが不十分である。
エージェント強化ポリシー最適化(ARPO: Agentic Reinforced Policy Optimization)は,マルチターンLDMエージェントを学習するためのエージェントRLアルゴリズムである。
論文 参考訳(メタデータ) (2025-07-26T07:53:11Z) - Feature Engineering for Agents: An Adaptive Cognitive Architecture for Interpretable ML Monitoring [2.1205272468688574]
大規模言語モデルに基づくエージェントに特徴工学の原則を適用したMLモニタリングのための認知アーキテクチャを提案する。
決定手順モジュールは、リファクタリング、ブレークダウン、コンパイルという3つの重要なステップを通じて、機能エンジニアリングをシミュレートする。
複数のLCMを用いた実験により, 各種ベースラインと比較して精度が有意に向上し, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2025-06-11T13:48:25Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Large Language Models for Anomaly Detection in Computational Workflows: from Supervised Fine-Tuning to In-Context Learning [9.601067780210006]
本稿では,大規模言語モデル(LLM)を用いて,複雑なデータパターンの学習能力を活用することにより,ワークフローの異常検出を行う。
教師付き微調整 (SFT) では, 文分類のためのラベル付きデータに基づいて事前学習したLCMを微調整し, 異常を識別する。
論文 参考訳(メタデータ) (2024-07-24T16:33:04Z) - Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
我々は,事前訓練された大規模言語モデル (LLM) がゼロショットバッチレベルの異常検出器であることを示す。
本稿では,実異常検出におけるLCMの潜在性を明らかにするために,エンドツーエンドの微調整手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T04:17:03Z) - Large Language Models can Deliver Accurate and Interpretable Time Series Anomaly Detection [34.40206965758026]
時系列異常検出(TSAD)は、標準トレンドから逸脱する非定型パターンを特定することで、様々な産業において重要な役割を果たす。
従来のTSADモデルは、しばしばディープラーニングに依存しており、広範なトレーニングデータを必要とし、ブラックボックスとして動作する。
LLMADは,Large Language Models (LLMs) を用いて,高精度かつ解釈可能なTSAD結果を提供する新しいTSAD手法である。
論文 参考訳(メタデータ) (2024-05-24T09:07:02Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。