論文の概要: An Accounting Identity for Algorithmic Fairness
- arxiv url: http://arxiv.org/abs/2601.20217v1
- Date: Wed, 28 Jan 2026 03:38:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-29 15:46:06.752113
- Title: An Accounting Identity for Algorithmic Fairness
- Title(参考訳): アルゴリズムフェアネスのための会計ID
- Authors: Hadi Elzayn, Jacob Goldin,
- Abstract要約: 我々は、精度と共通公平度基準を結びつける予測モデルに対する会計IDを導出する。
2つの結果に対して、この予算はモデルの平均2乗誤差の時間であり、結果クラス間のグループ頻度の違いである。
- 参考スコア(独自算出の注目度): 1.1172382217477128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive an accounting identity for predictive models that links accuracy with common fairness criteria. The identity shows that for globally calibrated models, the weighted sums of miscalibration within groups and error imbalance across groups is equal to a "total unfairness budget." For binary outcomes, this budget is the model's mean-squared error times the difference in group prevalence across outcome classes. The identity nests standard impossibility results as special cases, while also describing inherent tradeoffs when one or more fairness measures are not perfectly satisfied. The results suggest that accuracy and fairness are best viewed as complements in binary prediction tasks: increasing accuracy necessarily shrinks the total unfairness budget and vice-versa. Experiments on benchmark data confirm the theory and show that many fairness interventions largely substitute between fairness violations, and when they reduce accuracy they tend to expand the total unfairness budget. The results extend naturally to prediction tasks with non-binary outcomes, illustrating how additional outcome information can relax fairness incompatibilities and identifying conditions under which the binary-style impossibility does and does not extend to regression tasks.
- Abstract(参考訳): 我々は、精度と共通公平度基準を結びつける予測モデルに対する会計IDを導出する。
このアイデンティティは、グローバルに校正されたモデルでは、グループ内の誤校正の重み付けとグループ間の誤差不均衡の和が「完全な不公平性予算」に等しいことを示している。
2つの結果に対して、この予算はモデルの平均2乗誤差の時間であり、結果クラス間のグループ頻度の違いである。
1つ以上の公正度対策が完全に満たされていない場合に固有のトレードオフを記述する一方で、アイデンティティは特別なケースとして標準のイノシシビリティをネストする。
その結果、精度と公正性は二分予測タスクの補完とみなすのが最善であることが示唆された。
ベンチマークデータを用いた実験では、多くの公正な介入がフェアネス違反に代わることが確認され、精度を低下させると、全体不公平な予算を拡大する傾向にあることが示された。
結果は、非バイナリ結果の予測タスクに自然に拡張され、付加的な結果情報が公正不整合を緩和し、バイナリスタイルの不合理性が達成され、回帰タスクに拡張されない条件を特定する。
関連論文リスト
- FairlyUncertain: A Comprehensive Benchmark of Uncertainty in Algorithmic Fairness [4.14360329494344]
フェアネスにおける不確実性評価のための公理的ベンチマークであるFairlyUncertainを紹介する。
我々のベンチマークは、予測の不確実性推定は学習パイプライン間で一貫性があり、観測されたランダム性に調整されるべきである、と示唆している。
論文 参考訳(メタデータ) (2024-10-02T20:15:29Z) - Identifying and Mitigating Social Bias Knowledge in Language Models [52.52955281662332]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Equal Opportunity of Coverage in Fair Regression [50.76908018786335]
我々は、予測の不確実性の下で公正な機械学習(ML)を研究し、信頼性と信頼性のある意思決定を可能にする。
本研究は,(1)類似した結果の異なる集団に対するカバー率が近いこと,(2)人口全体のカバー率が一定水準にあること,の2つの特性を達成することを目的としたカバーの平等機会(EOC)を提案する。
論文 参考訳(メタデータ) (2023-11-03T21:19:59Z) - RobustFair: Adversarial Evaluation through Fairness Confusion Directed
Gradient Search [8.278129731168127]
ディープニューラルネットワーク(DNN)は、様々な敵の摂動に対する脆弱性のため、しばしば課題に直面している。
本稿では, 偽りや偏りのある摂動を受ける場合のDNNの正確な公平性を評価するための新しいアプローチであるRobustFairを紹介する。
論文 参考訳(メタデータ) (2023-05-18T12:07:29Z) - Fairness through Aleatoric Uncertainty [18.95295731419523]
フェアネス・ユーティリティ・トレードオフを改善するために、アレタリック不確実性(例えば、データのあいまいさ)を活用するという考え方を紹介します。
我々の中心的な仮説は、アレタリック不確実性はアルゴリズムの公正性の鍵となる要素であるということである。
次に,アレータリック不確実性が高い場合の公平性を向上し,他の分野での有効性を向上させるための基本モデルを提案する。
論文 参考訳(メタデータ) (2023-04-07T13:50:57Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - On Comparing Fair Classifiers under Data Bias [42.43344286660331]
本研究では,データ偏差の変化が公正分類器の精度と公平性に及ぼす影響について検討する。
我々の実験は、既存のフェアネスダッシュボードにデータバイアスリスクの尺度を統合する方法を示している。
論文 参考訳(メタデータ) (2023-02-12T13:04:46Z) - Arbitrariness and Social Prediction: The Confounding Role of Variance in
Fair Classification [31.392067805022414]
異なる訓練されたモデル間での予測のばらつきは、公正なバイナリ分類における重要な、未探索のエラーの原因である。
実際には、いくつかのデータ例のばらつきは非常に大きいので、決定を効果的に任意にすることができる。
予測が任意である場合に分類を省略するアンサンブルアルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-01-27T06:52:04Z) - Beyond calibration: estimating the grouping loss of modern neural
networks [68.8204255655161]
適切なスコアリングルール理論は、キャリブレーション損失が与えられた場合、個々のエラーを特徴づける欠片がグループ化損失であることを示している。
視覚およびNLPにおける現代のニューラルネットワークアーキテクチャは、特に分散シフト設定においてグループ化損失を示す。
論文 参考訳(メタデータ) (2022-10-28T07:04:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。