論文の概要: SMKC: Sketch Based Kernel Correlation Images for Variable Cardinality Time Series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2601.21050v1
- Date: Wed, 28 Jan 2026 21:15:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:49.438692
- Title: SMKC: Sketch Based Kernel Correlation Images for Variable Cardinality Time Series Anomaly Detection
- Title(参考訳): SMKC:可変心電図時系列異常検出のためのスケッチに基づくカーネル相関画像
- Authors: Haokun Zhou,
- Abstract要約: 運用環境では、監視システムはセンサーチャーンを頻繁に経験する。
本稿では,異常検出器から動的入力構造を分離するフレームワークSMKCを提案する。
SMKC表現におけるランダムプロジェクションと近傍近傍の検出器は、完全に訓練されたベースラインと競合する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conventional anomaly detection in multivariate time series relies on the assumption that the set of observed variables remains static. In operational environments, however, monitoring systems frequently experience sensor churn. Signals may appear, disappear, or be renamed, creating data windows where the cardinality varies and may include values unseen during training. To address this challenge, we propose SMKC, a framework that decouples the dynamic input structure from the anomaly detector. We first employ permutation-invariant feature hashing to sketch raw inputs into a fixed size state sequence. We then construct a hybrid kernel image to capture global temporal structure through pairwise comparisons of the sequence and its derivatives. The model learns normal patterns using masked reconstruction and a teacher-student prediction objective. Our evaluation reveals that robust log-distance channels provide the primary discriminative signal, whereas cosine representations often fail to capture sufficient contrast. Notably, we find that a detector using random projections and nearest neighbors on the SMKC representation performs competitively with fully trained baselines without requiring gradient updates. This highlights the effectiveness of the representation itself and offers a practical cold-start solution for resource-constrained deployments.
- Abstract(参考訳): 多変量時系列における従来の異常検出は、観測された変数の集合が静的であるという仮定に依存している。
しかし、運用環境では、監視システムはしばしばセンサーチャーンを経験する。
信号が現れるか、消えるか、改名されるか、基数が異なるデータウィンドウを作成し、トレーニング中に見つからない値を含む可能性がある。
この課題に対処するために,異常検出器から動的入力構造を分離するフレームワークSMKCを提案する。
まず、置換不変の特徴ハッシュを用いて、生の入力を固定サイズの状態シーケンスにスケッチする。
そこで我々は,シーケンスとそのデリバティブのペア比較により,大域的時間構造を捉えるために,ハイブリッドカーネル画像を構築した。
モデルでは,マスクを用いた再構築と教師/学生の予測目標を用いて,通常のパターンを学習する。
我々の評価では、ロバストな対数距離チャネルが主識別信号を提供するのに対し、コサイン表現は十分なコントラストを捉えないことが多い。
特に,ランダムプロジェクションとSMKC表現の近傍近傍を用いた検出器が,勾配更新を必要とせず,完全に訓練されたベースラインと競合することがわかった。
これは表現自体の有効性を強調し、リソース制約のあるデプロイメントに対して実用的なコールドスタートソリューションを提供する。
関連論文リスト
- DiffRegCD: Integrated Registration and Change Detection with Diffusion Features [74.3102451211493]
DiffRegCDは、単一のモデルで密度の高い登録と変更検出を統一する統合フレームワークである。
空中(LEVIR-CD, DSIFN-CD, WHU-CD, SYSU-CD)と地上(VL-CMU-CD)のデータセットによる実験は、DiffRegCDが最近のベースラインを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2025-11-11T07:32:19Z) - On Multi-entity, Multivariate Quickest Change Point Detection [2.0369245689839817]
変更点検出(CPD)は、従来のセンシング手法が実現不可能なクラウドモニタリングのアプリケーションによって動機付けられている。
本稿では,正常度からの個人偏差(IDfN)の概念を紹介し,正常度を訓練した再構成エラーベースのオートエンコーダを用いて計算する。
平均値、分散値、カーネル密度推定値(KDE)を用いてこれらの個々の偏差を集約し、システムワイド異常スコア(SWAS)を生成する。
我々の教師なしアプローチはラベル付きデータや特徴抽出の必要性を排除し、ストリーミング入力のリアルタイム操作を可能にします。
論文 参考訳(メタデータ) (2025-09-22T18:35:24Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
時系列予測は、周波数の異なる周期特性から導かれる。
マルチ周波数参照系列相関解析に基づく新しい時系列予測手法を提案する。
主要なオープンデータセットと合成データセットの実験は、最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-03-11T11:40:14Z) - Detecting Anomalies in Dynamic Graphs via Memory enhanced Normality [39.476378833827184]
動的グラフにおける異常検出は、グラフ構造と属性の時間的進化によって大きな課題となる。
時空間記憶強調グラフオートエンコーダ(STRIPE)について紹介する。
STRIPEは、AUCスコアが5.8%改善し、トレーニング時間が4.62倍速く、既存の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2024-03-14T02:26:10Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
一般化可能な暗黙的ニューラル表現(INR)は、単一の連続関数が複数のデータインスタンスを表現することを可能にする。
本稿では、変換器エンコーダと局所性を考慮したINRデコーダを組み合わせた一般化可能なINRのための新しいフレームワークを提案する。
我々のフレームワークは、従来の一般化可能なINRよりも大幅に優れており、下流タスクにおける局所性を考慮した潜在能力の有効性を検証している。
論文 参考訳(メタデータ) (2023-10-09T11:26:58Z) - Harnessing Contrastive Learning and Neural Transformation for Time Series Anomaly Detection [0.0]
時系列異常検出(TSAD)は多くの産業応用において重要な役割を担っている。
コントラスト学習は、ラベルのないデータから意味のある表現を抽出する過程において、時系列領域で勢いを増している。
本研究では,学習可能な変換で強化されたウィンドウベースのコントラスト学習戦略を取り入れた新しいアプローチであるCNTを提案する。
論文 参考訳(メタデータ) (2023-04-16T21:36:19Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - An Attention-based ConvLSTM Autoencoder with Dynamic Thresholding for
Unsupervised Anomaly Detection in Multivariate Time Series [2.9685635948299995]
本稿では,異常検出と診断を行うための動的閾値保持(ACLAE-DT)フレームワークを用いた非教師付き注意型畳み込み長短期記憶(ConvLSTM)オートエンコーダを提案する。
フレームワークは、システムステータスを特徴付ける機能イメージを構築する前に、データの事前処理と強化から始まります。
構築した特徴画像は注意に基づくConvLSTMオートエンコーダに入力される。
その後、再構成エラーを計算し、統計に基づく動的しきい値決定機構により異常を検出し診断する。
論文 参考訳(メタデータ) (2022-01-23T04:01:43Z) - Imputing Missing Observations with Time Sliced Synthetic Minority
Oversampling Technique [0.3973560285628012]
本稿では,データセット内の各サンプルに対して均一な不規則な時系列を構成することを目的とした,単純かつ斬新な時系列計算手法を提案する。
我々は、観測時間の重複しないビン(「スライス」と呼ばれる)の中間点で定義される格子を固定し、各サンプルが所定の時間にすべての特徴に対して値を持つことを保証する。
これにより、完全に欠落した観察をインプットし、データ全体の時系列の均一な分類を可能にし、特別な場合には個々の欠落した特徴をインプットすることができる。
論文 参考訳(メタデータ) (2022-01-14T19:23:24Z) - Blind Coherent Preamble Detection via Neural Networks [2.2063018784238984]
ニューラルネットワーク(NN)シークエンス検出器とタイミング先進推定器を提案する。
NNによるプリアンブル検出のプロセス全体を置き換えるものではない。
本稿では,通信路効果を補うために,検出器内の信号を組み合わせたテキストブロードコヒーレントにのみNNを用いることを提案する。
論文 参考訳(メタデータ) (2021-09-30T09:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。