論文の概要: From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
- arxiv url: http://arxiv.org/abs/2601.21955v2
- Date: Tue, 03 Feb 2026 16:45:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 16:18:58.81281
- Title: From Generative Modeling to Clinical Classification: A GPT-Based Architecture for EHR Notes
- Title(参考訳): ジェネレーティブモデリングから臨床分類へ:EHRノートのためのGPTベースのアーキテクチャ
- Authors: Fariba Afrin Irany,
- Abstract要約: 本研究は臨床テキスト分類のためのGPTアーキテクチャを提案する。
すべてのモデルパラメータを更新する代わりに、GPT-2のバックボーンの大部分は凍結されている。
提案手法はMIMIC-IV-Noteデータセットからの放射線学報告に基づいて評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing availability of unstructured clinical narratives in electronic health records (EHRs) has created new opportunities for automated disease characterization, cohort identification, and clinical decision support. However, modeling long, domain-specific clinical text remains challenging due to limited labeled data, severe class imbalance, and the high computational cost of adapting large pretrained language models. This study presents a GPT-based architecture for clinical text classification that adapts a pretrained decoder-only Transformer using a selective fine-tuning strategy. Rather than updating all model parameters, the majority of the GPT-2 backbone is frozen, and training is restricted to the final Transformer block, the final layer normalization, and a lightweight classification head. This approach substantially reduces the number of trainable parameters while preserving the representational capacity required to model complex clinical language. The proposed method is evaluated on radiology reports from the MIMIC-IV-Note dataset using uncertainty-aware CheXpert-style labels derived directly from report text. Experiments cover multiple problem formulations, including multi-label classification of radiographic findings, binary per-label classification under different uncertainty assumptions, and aggregate disease outcome prediction. Across varying dataset sizes, the model exhibits stable convergence behavior and strong classification performance, particularly in settings dominated by non-mention and negated findings. Overall, the results indicate that selective fine-tuning of pretrained generative language models provides an efficient and effective pathway for clinical text classification, enabling scalable adaptation to real-world EHR data while significantly reducing computational complexity.
- Abstract(参考訳): 電子健康記録(EHR)における非構造的臨床物語の可用性の向上は、自動疾患の特徴付け、コホート同定、臨床決定支援のための新たな機会を生み出している。
しかし、長いドメイン固有の臨床テキストのモデリングは、ラベル付きデータに制限があり、クラス不均衡が深刻であり、大きな事前訓練された言語モデルを適用するのに高い計算コストがかかるため、依然として困難である。
本研究は,選択的微調整戦略を用いて,予め訓練したデコーダのみのトランスフォーマを適応する臨床テキスト分類のためのGPTアーキテクチャを提案する。
すべてのモデルパラメータを更新する代わりに、GPT-2バックボーンの大部分が凍結され、トレーニングは最終トランスフォーマーブロック、最終層正規化、軽量な分類ヘッドに制限される。
このアプローチは、複雑な臨床言語をモデル化するために必要な表現能力を維持しながら、トレーニング可能なパラメータの数を大幅に削減する。
提案手法は,MIMIC-IV-Noteデータセットから,報告テキストから直接抽出した不確実性を意識したCheXpertスタイルラベルを用いて,放射線学レポートに基づいて評価する。
実験は複数の問題定式化をカバーしており、X線写真所見の多ラベル分類、不確実性の異なる仮定の下でのバイナリごとの分類、総合的な疾患結果予測などが含まれる。
データセットのサイズは様々であり、安定収束挙動と強い分類性能を示す。
その結果、事前学習した生成言語モデルの選択的微調整は、臨床テキスト分類のための効率的かつ効果的な経路を提供し、実世界のEHRデータへのスケーラブルな適応を可能にするとともに、計算複雑性を著しく低減することを示した。
関連論文リスト
- A Semantically Enhanced Generative Foundation Model Improves Pathological Image Synthesis [82.01597026329158]
本稿では,組織合成のための相関調整フレームワーク(CRAFTS)について紹介する。
CRAFTSは、生物学的精度を確保するためにセマンティックドリフトを抑制する新しいアライメント機構を組み込んでいる。
本モデルは,30種類の癌にまたがる多彩な病理像を生成する。
論文 参考訳(メタデータ) (2025-12-15T10:22:43Z) - ClinStructor: AI-Powered Structuring of Unstructured Clinical Texts [3.073796943975155]
我々は,ClinStructorについて述べる。ClinStructorは大規模言語モデル(LLM)を利用して,臨床自由テキストを予測モデルに先立って構造化されたタスク固有の質問応答ペアに変換するパイプラインである。
本手法は透明性と制御性を大幅に向上させ,予測性能の低下を招く。
論文 参考訳(メタデータ) (2025-11-14T21:21:16Z) - S-RRG-Bench: Structured Radiology Report Generation with Fine-Grained Evaluation Framework [39.542375803362965]
胸部X線などの診断画像のための放射線診断レポート生成(RRG)は、臨床とAIの両方において重要な役割を担っている。
従来のフリーテキストレポートは冗長性と一貫性のない言語に悩まされ、臨床的に重要な詳細の抽出が複雑になる。
本稿では、データセット構築、モデルトレーニング、新しい評価フレームワークの導入を含む、S-RRGに対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2025-08-04T05:49:41Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVDは、英国バイオバンクから50万人以上の参加者を対象に、大規模な言語モデルに基づいて構築された適応可能なCVDリスク予測フレームワークである。
包括的かつ可変的な患者情報を柔軟に取り込み、構造化データと非構造化テキストの両方をシームレスに統合し、最小限の追加データを使用して新規患者の集団に迅速に適応する。
論文 参考訳(メタデータ) (2025-05-30T14:42:02Z) - A Multimodal Transformer: Fusing Clinical Notes with Structured EHR Data
for Interpretable In-Hospital Mortality Prediction [8.625186194860696]
臨床ノートと構造化HRデータを融合し,院内死亡率の予測に役立てる新しいマルチモーダルトランスフォーマーを提案する。
そこで本研究では,臨床ノートにおいて重要な単語を選択するための統合的勾配(IG)手法を提案する。
また,臨床 BERT における領域適応型事前訓練とタスク適応型微調整の重要性についても検討した。
論文 参考訳(メタデータ) (2022-08-09T03:49:52Z) - Medical Scientific Table-to-Text Generation with Human-in-the-Loop under
the Data Sparsity Constraint [11.720364723821993]
効率的なテーブル・ツー・テキスト要約システムは、このデータをレポートにまとめる手作業を大幅に減らすことができる。
しかし、実際には、この問題は、正確で信頼性の高い出力を生成するための最先端の自然言語生成モデルの、データポーカリティ、データポーサリティ、および機能不全によって大きく妨げられている。
本稿では, 自動補正, コピー機構, 合成データ拡張によって強化された新しい2段階アーキテクチャを用いて, テーブル・ツー・テキスト・アプローチを提案し, それらの課題に対処する。
論文 参考訳(メタデータ) (2022-05-24T21:10:57Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Predicting Clinical Diagnosis from Patients Electronic Health Records
Using BERT-based Neural Networks [62.9447303059342]
医療コミュニティにおけるこの問題の重要性を示す。
本稿では,変換器 (BERT) モデルによる2方向表現の分類順序の変更について述べる。
約400万人のユニークな患者訪問からなる、大規模なロシアのEHRデータセットを使用します。
論文 参考訳(メタデータ) (2020-07-15T09:22:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。