論文の概要: Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
- arxiv url: http://arxiv.org/abs/2601.21963v1
- Date: Thu, 29 Jan 2026 16:42:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-01-30 16:22:50.00383
- Title: Industrialized Deception: The Collateral Effects of LLM-Generated Misinformation on Digital Ecosystems
- Title(参考訳): 産業的虚偽:LLM生成誤報がデジタル生態系に及ぼす影響
- Authors: Alexander Loth, Martin Kappes, Marc-Oliver Pahl,
- Abstract要約: 本稿では,文献レビューから実践的対策へ移行する。
本稿では,Large Language Models(LLM)とマルチモーダルシステムによるAI生成コンテンツの改善について報告する。
我々は, LLMに基づく検出, 接種アプローチ, および生成AIの二重利用特性を含む緩和戦略について論じる。
- 参考スコア(独自算出の注目度): 47.03825808787752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative AI and misinformation research has evolved since our 2024 survey. This paper presents an updated perspective, transitioning from literature review to practical countermeasures. We report on changes in the threat landscape, including improved AI-generated content through Large Language Models (LLMs) and multimodal systems. Central to this work are our practical contributions: JudgeGPT, a platform for evaluating human perception of AI-generated news, and RogueGPT, a controlled stimulus generation engine for research. Together, these tools form an experimental pipeline for studying how humans perceive and detect AI-generated misinformation. Our findings show that detection capabilities have improved, but the competition between generation and detection continues. We discuss mitigation strategies including LLM-based detection, inoculation approaches, and the dual-use nature of generative AI. This work contributes to research addressing the adverse impacts of AI on information quality.
- Abstract(参考訳): 生成的AIと誤情報の研究は、2024年のサーベイ以来進化してきた。
本稿では,文献レビューから実践的対策への転換という,新たな視点を提示する。
本稿では,Large Language Models(LLM)とマルチモーダルシステムによるAI生成コンテンツの改善を含む,脅威の状況の変化について報告する。
この研究の中心は、AI生成ニュースに対する人間の認識を評価するプラットフォームであるJiceGPTと、研究のための制御された刺激生成エンジンであるRogueGPTである。
これらのツールは、人間がAIが生成した誤情報をどのように認識し、検出するかを研究するための実験パイプラインを形成している。
その結果,検出能力は向上したが,生成と検出の競合は継続していることがわかった。
我々は, LLMに基づく検出, 接種アプローチ, および生成AIの二重利用特性を含む緩和戦略について論じる。
この研究は、情報品質に対するAIの悪影響に対処する研究に貢献する。
関連論文リスト
- AI Deception: Risks, Dynamics, and Controls [153.71048309527225]
このプロジェクトは、AI偽装分野の包括的で最新の概要を提供する。
我々は、動物の偽装の研究からシグナル伝達理論に基づく、AI偽装の正式な定義を同定する。
我々は,AI偽装研究の展望を,偽装発生と偽装処理の2つの主要な構成要素からなる偽装サイクルとして整理する。
論文 参考訳(メタデータ) (2025-11-27T16:56:04Z) - Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
本稿では,生成型AIツールの利用の増加に伴って生じる複雑な情報ダイナミクスについて,新たな定量的アプローチを提案する。
本稿では,新たなトピックに応答して情報の生成,索引付け,普及を特徴付けるモデルを提案する。
以上の結果から,AI導入の急激なペースとユーザ依存度の増加は,不正確な情報拡散のリスクを増大させる可能性が示唆された。
論文 参考訳(メタデータ) (2025-04-29T10:21:40Z) - Agentic AI for Scientific Discovery: A Survey of Progress, Challenges, and Future Directions [0.0]
エージェントAIシステムは推論、計画、自律的な意思決定を行うことができる。
彼らは、科学者が文献のレビューを行い、仮説を作成し、実験を行い、結果を分析する方法を変えようとしている。
論文 参考訳(メタデータ) (2025-03-12T01:00:05Z) - Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods [13.14749943120523]
テキストが人工知能(AI)によって作成されたかどうかを知ることは、その信頼性を決定する上で重要である。
AIGT検出に対する最先端のアプローチには、透かし、統計学的およびスタイリスティック分析、機械学習分類などがある。
AIGTテキストがどのようなシナリオで「検出可能」であるかを判断するために、結合する健全な要因についての洞察を提供することを目指している。
論文 参考訳(メタデータ) (2024-06-21T18:31:49Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - LioNets: A Neural-Specific Local Interpretation Technique Exploiting
Penultimate Layer Information [6.570220157893279]
解釈可能な機械学習(IML)は研究の緊急のトピックである。
本稿では,テキストデータと時系列データに適用される局所的,神経特異的な解釈プロセスに焦点を当てる。
論文 参考訳(メタデータ) (2021-04-13T09:39:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。