論文の概要: It's all In the (Exponential) Family: An Equivalence between Maximum Likelihood Estimation and Control Variates for Sketching Algorithms
- arxiv url: http://arxiv.org/abs/2601.22378v2
- Date: Wed, 04 Feb 2026 17:35:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 15:07:33.607003
- Title: It's all In the (Exponential) Family: An Equivalence between Maximum Likelihood Estimation and Control Variates for Sketching Algorithms
- Title(参考訳): It's all of the (Exponential) family: An Equivalence between Maximum Likelihood Estimation and Control Varates for Sketching Algorithms
- Authors: Keegan Kang, Kerong Wang, Ding Zhang, Rameshwar Pratap, Bhisham Dev Verma, Benedict H. W. Wong,
- Abstract要約: 我々は、最適CVEがMLEと同じ分散を達成することを示し、MLEの最大期待-最大化アルゴリズムを提供する。
我々は,EMアルゴリズムがMLE/CVEを用いたアルゴリズムのスケッチにどのように寄与するかを示し,CV重みが分かっているとき,EMアルゴリズムがMLEの発見にどう寄与するかを示す。
- 参考スコア(独自算出の注目度): 3.349054271019852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maximum likelihood estimators (MLE) and control variate estimators (CVE) have been used in conjunction with known information across sketching algorithms and applications in machine learning. We prove that under certain conditions in an exponential family, an optimal CVE will achieve the same asymptotic variance as the MLE, giving an Expectation-Maximization (EM) algorithm for the MLE. Experiments show the EM algorithm is faster and numerically stable compared to other root finding algorithms for the MLE for the bivariate Normal distribution, and we expect this to hold across distributions satisfying these conditions. We show how the EM algorithm leads to reproducibility for algorithms using MLE / CVE, and demonstrate how the EM algorithm leads to finding the MLE when the CV weights are known.
- Abstract(参考訳): 最大確率推定器 (MLE) と制御変数推定器 (CVE) は、スケッチアルゴリズムや機械学習の応用にまたがる既知の情報と共に使われている。
指数族のある条件下では、最適CVEはMLEと同じ漸近分散を達成し、MLEに対して期待最大化(EM)アルゴリズムを与える。
実験により,二変量正規分布に対するMLEの他のルート探索アルゴリズムと比較して,EMアルゴリズムは高速かつ数値的に安定であることが確認された。
我々は,EMアルゴリズムがMLE/CVEを用いたアルゴリズムの再現性にどのように寄与するかを示し,CV重みが分かっているとき,EMアルゴリズムがMLEの発見にどう寄与するかを示す。
関連論文リスト
- Algorithme EM r\'egularis\'e [0.0]
本稿では,より少ないサンプルサイズに対応するために,事前知識を効率的に活用するEMアルゴリズムの正規化バージョンを提案する。
実データを用いた実験では,クラスタリングのための提案アルゴリズムの性能が向上した。
論文 参考訳(メタデータ) (2023-07-04T23:19:25Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Regularized EM algorithm [9.367612782346205]
本稿では,従来の知識を効率的に活用し,LSSの状況に対処できる,GMM-sの正規化EMアルゴリズムを提案する。
コンバージェンスホールドの理論的保証は、構造化共分散行列モデルや低サンプル設定のEMアルゴリズムの性能向上につながることを示す。
論文 参考訳(メタデータ) (2023-03-27T08:32:20Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Selection of the Most Probable Best [2.1095005405219815]
予測値ランキングと選択(R&S)問題では,すべてのk解のシミュレーション出力が,分布によって不確実性をモデル化可能な共通パラメータに依存する。
我々は、最も確率の高い最適解 (MPB) を、分布に関して最適である確率が最も大きい解と定義する。
最適化条件における未知の手段をその推定値に置き換えるアルゴリズムを考案し,シミュレーション予算が増加するにつれて,アルゴリズムのサンプリング比が条件を満たすことを証明した。
論文 参考訳(メタデータ) (2022-07-15T15:27:27Z) - Stochastic Approximation with Decision-Dependent Distributions: Asymptotic Normality and Optimality [8.771678221101368]
我々は、アルゴリズムが使用するデータ分布が反復列に沿って進化する決定依存問題に対する近似を解析する。
軽微な仮定の下では、アルゴリズムの反復と解の偏差は正規であることを示す。
また,平均化アルゴリズムの性能は局所的に最小限であることを示す。
論文 参考訳(メタデータ) (2022-07-09T01:44:17Z) - The EM Perspective of Directional Mean Shift Algorithm [3.60425753550939]
指向性平均シフト (DMS) アルゴリズムは、単位超球面上のカーネル密度推定器によって定義される局所的な密度モードを求める非パラメトリックな手法である。
任意のdmsを一般化期待最大化(em)アルゴリズムと見なすことができることを示す。
論文 参考訳(メタデータ) (2021-01-25T13:17:12Z) - Plug-And-Play Learned Gaussian-mixture Approximate Message Passing [71.74028918819046]
そこで本研究では,従来のi.i.d.ソースに適した圧縮圧縮センシング(CS)リカバリアルゴリズムを提案する。
我々のアルゴリズムは、Borgerdingの学習AMP(LAMP)に基づいて構築されるが、アルゴリズムに普遍的な復調関数を採用することにより、それを大幅に改善する。
数値評価により,L-GM-AMPアルゴリズムは事前の知識を必要とせず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-11-18T16:40:45Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。