論文の概要: Improving Supervised Machine Learning Performance in Optical Quality Control via Generative AI for Dataset Expansion
- arxiv url: http://arxiv.org/abs/2601.22961v1
- Date: Fri, 30 Jan 2026 13:24:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-02 18:28:15.467543
- Title: Improving Supervised Machine Learning Performance in Optical Quality Control via Generative AI for Dataset Expansion
- Title(参考訳): データセット拡張のための生成AIによる光学品質制御における教師付き機械学習性能の改善
- Authors: Dennis Sprute, Hanna Senke, Holger Flatt,
- Abstract要約: 監視された機械学習アルゴリズムは、産業生産における光学品質制御において重要な役割を果たす。
特殊な損失関数や従来のデータ拡張テクニックといった、この課題に対処する既存の戦略には、制限がある。
本研究では、限られたデータセットを拡張するための代替手法として、生成人工知能(GenAI)の可能性を探る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised machine learning algorithms play a crucial role in optical quality control within industrial production. These approaches require representative datasets for effective model training. However, while non-defective components are frequent, defective parts are rare in production, resulting in highly imbalanced datasets that adversely impact model performance. Existing strategies to address this challenge, such as specialized loss functions or traditional data augmentation techniques, have limitations, including the need for careful hyperparameter tuning or the alteration of only simple image features. Therefore, this work explores the potential of generative artificial intelligence (GenAI) as an alternative method for expanding limited datasets and enhancing supervised machine learning performance. Specifically, we investigate Stable Diffusion and CycleGAN as image generation models, focusing on the segmentation of combine harvester components in thermal images for subsequent defect detection. Our results demonstrate that dataset expansion using Stable Diffusion yields the most significant improvement, enhancing segmentation performance by 4.6 %, resulting in a Mean Intersection over Union (Mean IoU) of 84.6 %.
- Abstract(参考訳): 監視された機械学習アルゴリズムは、産業生産における光学品質制御において重要な役割を果たす。
これらのアプローチは、効果的なモデルトレーニングのために代表的データセットを必要とする。
しかしながら、非欠陥コンポーネントは頻繁に存在するが、本番環境では欠陥部分が稀であり、結果としてモデルパフォーマンスに悪影響を及ぼす高度に不均衡なデータセットが生成される。
特殊な損失関数や従来のデータ拡張技術など、この課題に対処するための既存の戦略には、注意深いハイパーパラメータチューニングや単純な画像機能の変更など、制限がある。
そこで本研究では,限られたデータセットを拡張し,教師付き機械学習性能を向上させる代替手法として,生成人工知能(GenAI)の可能性を探る。
具体的には,画像生成モデルとしての安定拡散とCycleGANについて検討し,熱画像中のコンバイン成分のセグメンテーションに着目した。
その結果, 安定拡散によるデータセット拡張は, セグメンテーション性能を4.6%向上させ, 平均IoU(Mean Intersection over Union)は84.6%向上した。
関連論文リスト
- Ultra-Resolution Adaptation with Ease [62.56434979517156]
我々は,EmphURAEと呼ばれる超高分解能適応のための重要なガイドラインのセットを提案する。
重み行列の小さな成分のチューニングは、合成データが利用できない場合に広く使用される低ランクアダプタよりも優れていることを示す。
URAEは、FLUX1.1[Pro] Ultraのような最先端のクローズドソースモデルに匹敵する2K世代の性能を達成している。
論文 参考訳(メタデータ) (2025-03-20T16:44:43Z) - Scalable AI Framework for Defect Detection in Metal Additive Manufacturing [2.303463009749888]
我々は、畳み込みニューラルネットワーク(CNN)を利用してプリント層の熱画像を分析し、これらの特性に影響を与える異常を自動的に識別する。
我々はこれらのモデルをCLoud ADditive Manufacturing (CLADMA)モジュールに統合し、AMアプリケーションのアクセシビリティと実用性を向上させる。
論文 参考訳(メタデータ) (2024-11-01T18:17:59Z) - Feature-to-Image Data Augmentation: Improving Model Feature Extraction with Cluster-Guided Synthetic Samples [4.041834517339835]
本研究ではFICAugを紹介した。FICAugは機能間データ拡張フレームワークである。
構造化された合成サンプルを生成することにより、限られたデータ条件下でのモデル一般化を改善するように設計されている。
実験の結果, FICAugは分類精度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-09-26T09:51:08Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Synthetic Image Learning: Preserving Performance and Preventing Membership Inference Attacks [5.0243930429558885]
本稿では,下流分類器の学習のための合成データの生成と利用を最適化するパイプラインである知識リサイクル(KR)を紹介する。
このパイプラインの核心は生成的知識蒸留(GKD)であり、情報の品質と有用性を大幅に向上させる技術が提案されている。
その結果、実データと合成データでトレーニングされたモデルと、実データでトレーニングされたモデルとの性能差が著しく低下した。
論文 参考訳(メタデータ) (2024-07-22T10:31:07Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System [7.1083241462091165]
我々は,光学的文字認識(OCR)を基本とする外部モダリティ誘導データマイニングフレームワークを導入し,画像から統計的特徴を抽出する。
提案手法の重要な側面は、単一のモーダル認識モデルを用いて抽出された外部モーダル特徴のアライメントであり、畳み込みニューラルネットワークによって符号化された画像特徴である。
本手法は欠陥検出モデルのリコール率を大幅に向上させ,挑戦シナリオにおいても高い堅牢性を維持する。
論文 参考訳(メタデータ) (2024-03-18T07:41:39Z) - Defect Classification in Additive Manufacturing Using CNN-Based Vision
Processing [76.72662577101988]
本稿では、まず、畳み込みニューラルネットワーク(CNN)を用いて、画像データセットの欠陥をAMから第2に正確に分類し、発達した分類モデルにアクティブラーニング技術を適用する。
これにより、トレーニングデータやトレーニングデータの生成に必要なデータのサイズを削減できる、ヒューマン・イン・ザ・ループ機構の構築が可能になる。
論文 参考訳(メタデータ) (2023-07-14T14:36:58Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。