論文の概要: Deep Learning-Based Object Detection for Autonomous Vehicles: A Comparative Study of One-Stage and Two-Stage Detectors on Basic Traffic Objects
- arxiv url: http://arxiv.org/abs/2602.00385v1
- Date: Fri, 30 Jan 2026 23:05:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.149794
- Title: Deep Learning-Based Object Detection for Autonomous Vehicles: A Comparative Study of One-Stage and Two-Stage Detectors on Basic Traffic Objects
- Title(参考訳): 自動車の深層学習に基づく物体検出:基礎交通物体の1段・2段検出器の比較検討
- Authors: Bsher Karbouj, Adam Michael Altenbuchner, Joerg Krueger,
- Abstract要約: 本研究では, YOLOv5とFaster R-CNNの2つの物体検出モデルを比較した。
YOLOv5は、mAP、リコール、トレーニング効率の点で優れたパフォーマンスを示している。
しかし、より高速なR-CNNは、小さな遠方物体を検出する利点を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Object detection is a crucial component in autonomous vehicle systems. It enables the vehicle to perceive and understand its environment by identifying and locating various objects around it. By utilizing advanced imaging and deep learning techniques, autonomous vehicle systems can rapidly and accurately identify objects based on their features. Different deep learning methods vary in their ability to accurately detect and classify objects in autonomous vehicle systems. Selecting the appropriate method significantly impacts system performance, robustness, and efficiency in real-world driving scenarios. While several generic deep learning architectures like YOLO, SSD, and Faster R-CNN have been proposed, guidance on their suitability for specific autonomous driving applications is often limited. The choice of method affects detection accuracy, processing speed, environmental robustness, sensor integration, scalability, and edge case handling. This study provides a comprehensive experimental analysis comparing two prominent object detection models: YOLOv5 (a one-stage detector) and Faster R-CNN (a two-stage detector). Their performance is evaluated on a diverse dataset combining real and synthetic images, considering various metrics including mean Average Precision (mAP), recall, and inference speed. The findings reveal that YOLOv5 demonstrates superior performance in terms of mAP, recall, and training efficiency, particularly as dataset size and image resolution increase. However, Faster R-CNN shows advantages in detecting small, distant objects and performs well in challenging lighting conditions. The models' behavior is also analyzed under different confidence thresholds and in various real-world scenarios, providing insights into their applicability for autonomous driving systems.
- Abstract(参考訳): 物体検出は自動運転車システムにおいて重要な要素である。
車両は周囲のさまざまな物体を識別し、配置することで、その環境を知覚し、理解することができる。
高度な画像と深層学習技術を利用することで、自律走行車は特徴に基づいて物体を迅速かつ正確に識別することができる。
異なるディープラーニング手法は、自律走行車システムの物体を正確に検出し分類する能力において異なる。
適切な方法を選択することは、現実の運転シナリオにおけるシステム性能、堅牢性、効率性に大きな影響を及ぼす。
YOLO、SSD、Faster R-CNNといった汎用的なディープラーニングアーキテクチャが提案されているが、特定の自動運転アプリケーションに適合する可能性に関するガイダンスは限られている。
方法の選択は、検出精度、処理速度、環境の堅牢性、センサの統合、スケーラビリティ、エッジケースハンドリングに影響を及ぼす。
本研究では, YOLOv5 (1段検出器) とFaster R-CNN (2段検出器) の2つの顕著な物体検出モデルの比較実験を行った。
平均精度(mAP)、リコール、推論速度など、さまざまな指標を考慮して、実画像と合成画像を組み合わせた多種多様なデータセットで評価する。
その結果, YOLOv5は, データセットサイズや画像解像度が増大するにつれて, mAP, リコール, トレーニング効率の面で優れた性能を示すことがわかった。
しかし、より高速なR-CNNは、小さな遠方の物体を検知する利点を示し、挑戦的な照明条件でうまく機能する。
モデルの振る舞いは、異なる信頼しきい値と様々な実世界のシナリオで分析され、自律運転システムへの適用性に関する洞察を提供する。
関連論文リスト
- Fast-COS: A Fast One-Stage Object Detector Based on Reparameterized Attention Vision Transformer for Autonomous Driving [3.617580194719686]
本稿では、シーンを駆動するための新しい単一ステージオブジェクト検出フレームワークであるFast-COSを紹介する。
RAViTはImageNet-1Kデータセットで81.4%のTop-1精度を達成した。
主要なモデルの効率を上回り、最大75.9%のGPU推論速度とエッジデバイスでの1.38のスループットを提供する。
論文 参考訳(メタデータ) (2025-02-11T09:54:09Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
本研究では,新しいデータセット,ベンチマーク,動的粗大な学習手法を提案する。
提案するデータセットであるAI-TOD-Rは、すべてのオブジェクト指向オブジェクト検出データセットの中で最小のオブジェクトサイズを特徴としている。
完全教師付きおよびラベル効率の両アプローチを含む,幅広い検出パラダイムにまたがるベンチマークを提案する。
論文 参考訳(メタデータ) (2024-12-16T09:14:32Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - The Impact of Different Backbone Architecture on Autonomous Vehicle
Dataset [120.08736654413637]
バックボーンアーキテクチャによって抽出された特徴の質は、全体的な検出性能に大きな影響を与える可能性がある。
本研究は,KITTI,NuScenes,BDDの3つの自律走行車データセットを評価し,対象検出タスクにおける異なるバックボーンアーキテクチャの性能を比較した。
論文 参考訳(メタデータ) (2023-09-15T17:32:15Z) - Visual Exemplar Driven Task-Prompting for Unified Perception in
Autonomous Driving [100.3848723827869]
本稿では,タスク固有のプロンプトを通じて視覚的見本を提示する,効果的なマルチタスクフレームワークVE-Promptを提案する。
具体的には、境界ボックスと色に基づくマーカーに基づいて視覚的な例を生成し、ターゲットカテゴリの正確な視覚的外観を提供する。
我々は変圧器をベースとしたエンコーダと畳み込み層を橋渡しし、自律運転における効率的かつ正確な統合認識を実現する。
論文 参考訳(メタデータ) (2023-03-03T08:54:06Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
自律運転システムには2つの主要なアルゴリズムアプローチがある。
ディープラーニングだけでは、多くの分野で最先端の結果が得られています。
しかし、ディープラーニングモデルが機能しない場合、デバッグが非常に難しい場合もあります。
論文 参考訳(メタデータ) (2022-03-28T20:29:50Z) - Comparative study of 3D object detection frameworks based on LiDAR data
and sensor fusion techniques [0.0]
知覚システムは、車両の環境をリアルタイムで正確に解釈する上で重要な役割を果たす。
ディープラーニング技術は、センサーから大量のデータを意味情報に変換する。
3Dオブジェクト検出法は、LiDARやステレオカメラなどのセンサーから追加のポーズデータを利用することで、オブジェクトのサイズと位置に関する情報を提供する。
論文 参考訳(メタデータ) (2022-02-05T09:34:58Z) - Dynamic and Static Object Detection Considering Fusion Regions and
Point-wise Features [7.41540085468436]
本稿では,自動運転車の前方における静的・動的物体の検出手法を提案する。
われわれのアプローチは、検出された物体から、その位置、速度、方向などの他の特徴を得ることもできる。
提案手法の性能を示すために,ベンチマークデータセットと,自律プラットフォームから得られた実世界のデータを用いて評価する。
論文 参考訳(メタデータ) (2021-07-27T09:42:18Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - VATLD: A Visual Analytics System to Assess, Understand and Improve
Traffic Light Detection [15.36267013724161]
本稿では,自律運転アプリケーションにおける交通信号検知器の精度とロバスト性を評価・理解・改善する視覚分析システム,VATLDを提案する。
歪んだ表現学習は、人間に親しみやすい視覚的要約で人間の認知を強化するために、データ意味を抽出する。
また、視覚分析システムであるVATLDによる様々な性能改善戦略の有効性を実証し、自律運転における安全クリティカルな応用の実践的意義を示す。
論文 参考訳(メタデータ) (2020-09-27T22:39:00Z) - Traffic Signs Detection and Recognition System using Deep Learning [0.0]
本稿では,交通標識をリアルタイムに検出・認識するためのアプローチについて述べる。
マルチオブジェクト検出システムの最先端技術を用いて,交通信号検出問題に取り組む。
この論文の焦点は、F-RCNN Inception v2とTiny YOLO v2が最高の結果を得たときのものである。
論文 参考訳(メタデータ) (2020-03-06T14:54:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。