論文の概要: GTATrack: Winner Solution to SoccerTrack 2025 with Deep-EIoU and Global Tracklet Association
- arxiv url: http://arxiv.org/abs/2602.00484v1
- Date: Sat, 31 Jan 2026 03:08:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.215578
- Title: GTATrack: Winner Solution to SoccerTrack 2025 with Deep-EIoU and Global Tracklet Association
- Title(参考訳): GTATrack: SoccerTrack 2025の勝者ソリューションとDeep-EIoUとGlobal Tracklet Association
- Authors: Rong-Lin Jian, Ming-Chi Luo, Chen-Wei Huang, Chia-Ming Lee, Yu-Fan Lin, Chih-Chung Hsu,
- Abstract要約: GTATrackは2025年のサッカートラックチャレンジで優勝した階層的な追跡フレームワークです。
提案手法は, 勝利率0.60, 偽陽性率982に有意に低下し, 魚眼サッカー追跡における最先端の精度を示した。
- 参考スコア(独自算出の注目度): 9.872657039927427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-object tracking (MOT) in sports is highly challenging due to irregular player motion, uniform appearances, and frequent occlusions. These difficulties are further exacerbated by the geometric distortion and extreme scale variation introduced by static fisheye cameras. In this work, we present GTATrack, a hierarchical tracking framework that win first place in the SoccerTrack Challenge 2025. GTATrack integrates two core components: Deep Expansion IoU (Deep-EIoU) for motion-agnostic online association and Global Tracklet Association (GTA) for trajectory-level refinement. This two-stage design enables both robust short-term matching and long-term identity consistency. Additionally, a pseudo-labeling strategy is used to boost detector recall on small and distorted targets. The synergy between local association and global reasoning effectively addresses identity switches, occlusions, and tracking fragmentation. Our method achieved a winning HOTA score of 0.60 and significantly reduced false positives to 982, demonstrating state-of-the-art accuracy in fisheye-based soccer tracking. Our code is available at https://github.com/ron941/GTATrack-STC2025.
- Abstract(参考訳): スポーツにおける多目的追跡(MOT)は、不規則な選手の動き、均一な外見、頻繁な閉塞のために非常に困難である。
これらの困難は、静止魚眼カメラによって導入された幾何学的歪みと極端なスケールの変動によってさらに悪化する。
本稿では,2025年のサッカートラックチャレンジで優勝した階層的な追跡フレームワークであるGTATrackを紹介する。
GTATrackはDeep Expansion IoU(Deep-EIoU)とGTA(Global Tracklet Association)の2つのコアコンポーネントを統合している。
この2段階の設計は、堅牢な短期マッチングと長期的なアイデンティティ整合性の両方を可能にする。
さらに、小型および歪んだターゲットでの検出器リコールを促進するために擬似ラベル戦略が使用される。
ローカルアソシエーションとグローバルな推論の相乗効果は、アイデンティティスイッチ、オクルージョン、そして断片化の追跡に効果的に対処する。
提案手法は, 勝利率0.60, 偽陽性率982に有意に低下し, 魚眼サッカー追跡における最先端の精度を示した。
私たちのコードはhttps://github.com/ron941/GTATrack-STC2025で公開されています。
関連論文リスト
- GTA: Global Tracklet Association for Multi-Object Tracking in Sports [28.771579713224085]
スポーツシナリオにおける多目的追跡は、コンピュータビジョンにおける焦点の1つとなっている。
トラッキング性能を向上させるために,外見に基づくグローバルトラックレットアソシエーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-11-12T22:16:50Z) - Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - SoccerNet 2023 Tracking Challenge -- 3rd place MOT4MOT Team Technical
Report [0.552480439325792]
SoccerNet 2023の追跡課題は、サッカー選手とボールの検出と追跡を必要とする。
我々は、現在最先端のオンラインマルチオブジェクトトラッカーと、現代のオブジェクト検出装置をプレイヤー追跡に使用しています。
提案手法は, HOTAスコア66.27で, SoccerNet 2023の3位を獲得した。
論文 参考訳(メタデータ) (2023-08-31T11:51:16Z) - CoTracker: It is Better to Track Together [70.63040730154984]
CoTrackerは、長いビデオシーケンスで多数の2Dポイントを追跡するトランスフォーマーベースのモデルである。
関節トラッキングはトラッキング精度とロバスト性を大幅に改善し、CoTrackerはカメラビューの外側に隠された点や点を追跡することができる。
論文 参考訳(メタデータ) (2023-07-14T21:13:04Z) - Iterative Scale-Up ExpansionIoU and Deep Features Association for
Multi-Object Tracking in Sports [26.33239898091364]
本稿では,スポーツシナリオに対するDeep ExpansionIoU (Deep-EIoU) という,オンラインかつ堅牢な多対象追跡手法を提案する。
従来の手法とは異なり、カルマンフィルタの使用を放棄し、スポーツシナリオにおける拡張IoUの反復的なスケールアップと深い特徴を活用して、ロバストなトラッキングを行う。
提案手法は,SportsMOTデータセットで77.2%,SportsNet-Trackingデータセットで85.4%を達成し,不規則な動き物体の追跡に顕著な効果を示した。
論文 参考訳(メタデータ) (2023-06-22T17:47:08Z) - ByteTrackV2: 2D and 3D Multi-Object Tracking by Associating Every
Detection Box [81.45219802386444]
マルチオブジェクトトラッキング(MOT)は、ビデオフレーム間のオブジェクトのバウンディングボックスとIDを推定することを目的としている。
低スコア検出ボックス内の真のオブジェクトをマイニングするための階層型データアソシエーション戦略を提案する。
3次元のシナリオでは、トラッカーが世界座標の物体速度を予測するのがずっと簡単である。
論文 参考訳(メタデータ) (2023-03-27T15:35:21Z) - Observation Centric and Central Distance Recovery on Sports Player
Tracking [24.396926939889532]
本稿では,バスケットボール,サッカー,バレーボールを含む3つのスポーツを対象とした,モーションベースのトラッキングアルゴリズムと3つのポストプロセッシングパイプラインを提案する。
本手法は,2022年のSportsmotワークショップ最終リーダーボードで3位にランクインした73.968のHOTAを達成した。
論文 参考訳(メタデータ) (2022-09-27T04:48:11Z) - Dense Scene Multiple Object Tracking with Box-Plane Matching [73.54369833671772]
マルチオブジェクトトラッキング(MOT)はコンピュータビジョンにおいて重要なタスクである。
密集したシーンにおけるMOT性能を改善するために,Box-Plane Matching (BPM)法を提案する。
3つのモジュールの有効性により、ACM MM Grand Challenge HiEve 2020において、私たちのチームはトラック1のリーダーボードで1位を獲得しました。
論文 参考訳(メタデータ) (2020-07-30T16:39:22Z) - Tracking Objects as Points [83.9217787335878]
同時に検出と追跡を同時に行うアルゴリズムは,最先端技術よりもシンプルで,高速で,高精度である。
トラッカーであるCenterTrackは、前のフレームから一対のイメージと検出に検出モデルを適用します。
CenterTrackはシンプルで、オンライン(未来を覗くことはない)で、リアルタイムだ。
論文 参考訳(メタデータ) (2020-04-02T17:58:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。