論文の概要: Physics Informed Generative AI Enabling Labour Free Segmentation For Microscopy Analysis
- arxiv url: http://arxiv.org/abs/2602.01710v1
- Date: Mon, 02 Feb 2026 06:36:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-03 19:28:33.954875
- Title: Physics Informed Generative AI Enabling Labour Free Segmentation For Microscopy Analysis
- Title(参考訳): 物理インフォームド・ジェネレーティブAIによる顕微鏡解析のための労働自由分節の実現
- Authors: Salma Zahran, Zhou Ao, Zhengyang Zhang, Chen Chi, Chenchen Yuan, Yanming Wang,
- Abstract要約: 本稿では、シミュレーションと現実のギャップを埋めることのできる、労働自由化のための新しい枠組みを提案する。
我々は、不対向画像画像変換にCycleGAN(Cycle-Consistent Generative Adversarial Network)を用いる。
この合成データに特化して訓練されたU-Netモデルは、目に見えない実験画像に展開する際、顕著な一般化を示した。
- 参考スコア(独自算出の注目度): 3.3176565054468714
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of microscopy images is a critical task for high-throughput materials characterisation, yet its automation is severely constrained by the prohibitive cost, subjectivity, and scarcity of expert-annotated data. While physics-based simulations offer a scalable alternative to manual labelling, models trained on such data historically fail to generalise due to a significant domain gap, lacking the complex textures, noise patterns, and imaging artefacts inherent to experimental data. This paper introduces a novel framework for labour-free segmentation that successfully bridges this simulation-to-reality gap. Our pipeline leverages phase-field simulations to generate an abundant source of microstructural morphologies with perfect, intrinsically-derived ground-truth masks. We then employ a Cycle-Consistent Generative Adversarial Network (CycleGAN) for unpaired image-to-image translation, transforming the clean simulations into a large-scale dataset of high-fidelity, realistic SEM images. A U-Net model, trained exclusively on this synthetic data, demonstrated remarkable generalisation when deployed on unseen experimental images, achieving a mean Boundary F1-Score of 0.90 and an Intersection over Union (IOU) of 0.88. Comprehensive validation using t-SNE feature-space projection and Shannon entropy analysis confirms that our synthetic images are statistically and featurally indistinguishable from the real data manifold. By completely decoupling model training from manual annotation, our generative framework transforms a data-scarce problem into one of data abundance, providing a robust and fully automated solution to accelerate materials discovery and analysis.
- Abstract(参考訳): 顕微鏡画像のセマンティックセグメンテーションは、高出力材料の特徴付けにおいて重要な課題であるが、その自動化は、専門家による注釈付きデータの禁止コスト、主観性、不足によって厳しく制約されている。
物理に基づくシミュレーションは手動ラベリングに代わるスケーラブルな代替手段を提供するが、そのようなデータに基づいて訓練されたモデルは、実験データに固有の複雑なテクスチャ、ノイズパターン、画像アーティファクトを欠いた、重要なドメインギャップのために歴史的に一般化に失敗する。
本稿では,このシミュレーションと現実のギャップを橋渡しする,労働自由化のための新しい枠組みを提案する。
我々のパイプラインは、位相場シミュレーションを利用して、完璧な、本質的に派生した地層構造マスクを用いた、豊富な微細構造形態の源を生成する。
次に,CycleGAN(Cycle-Consistent Generative Adversarial Network)を用いて画像間変換を行い,クリーンなシミュレーションを高忠実でリアルなSEM画像の大規模データセットに変換する。
この合成データに特化して訓練されたU-Netモデルは、目に見えない実験画像に展開する際の顕著な一般化を示し、平均境界F1スコアは0.90、インターセクションは0.88である。
t-SNE特徴空間投影とシャノンエントロピー解析による包括的検証により,我々の合成画像が実データ多様体と統計的に区別不能であることが確認された。
モデルトレーニングを手動のアノテーションから完全に切り離すことで、生成フレームワークは、データスカース問題をデータ量の1つに変換し、材料発見と分析を加速するための堅牢で完全に自動化されたソリューションを提供する。
関連論文リスト
- Agent4FaceForgery: Multi-Agent LLM Framework for Realistic Face Forgery Detection [108.5042835056188]
この作業では,2つの基本的な問題に対処するため,Agent4FaceForgeryを導入している。
人間の偽造の多様な意図と反復的なプロセスを捉える方法。
ソーシャルメディアの偽造に付随する複雑な、しばしば敵対的な、テキストと画像のインタラクションをモデル化する方法。
論文 参考訳(メタデータ) (2025-09-16T01:05:01Z) - A Synthetic Dataset for Manometry Recognition in Robotic Applications [0.686108371431346]
手続き的レンダリングとAI駆動のビデオ生成を統合したハイブリッドデータ合成パイプラインを提案する。
YOLOベースの検出器は、合成データセットに基づいて訓練され、実際のデータと合成データを組み合わせた。
論文 参考訳(メタデータ) (2025-08-24T17:52:13Z) - Synthetic Dataset Generation for Autonomous Mobile Robots Using 3D Gaussian Splatting for Vision Training [0.708987965338602]
本論文では,Unreal Engineにおける注釈付き合成データの自動生成手法を提案する。
合成データセットが実世界のデータセットに匹敵する性能を達成できることを実証する。
これは、ロボットサッカーにおけるオブジェクト検出アルゴリズムのトレーニングのための合成データの最初の応用である。
論文 参考訳(メタデータ) (2025-06-05T14:37:40Z) - Unpaired Deblurring via Decoupled Diffusion Model [55.21345354747609]
UID-Diffは,未知領域における劣化性能の向上を目的とした生成拡散モデルである。
構造的特徴とぼかしパターン抽出器を別々に用いて, 抽出した特徴は, 合成データに対する教師付きデブロアリングタスクと教師なしのぼかし転送タスクに使用される。
実世界のデータセットの実験では、UID-Diffが既存の最先端の手法よりも、ぼやけた除去と構造保存に優れていることが示されている。
論文 参考訳(メタデータ) (2025-02-03T17:00:40Z) - Few-shot Online Anomaly Detection and Segmentation [29.693357653538474]
本稿では,難易度の高いオンライン異常検出・セグメンテーション(FOADS)の課題に対処することに焦点を当てる。
FOADSフレームワークでは、モデルを数ショットの通常のデータセットでトレーニングし、その後、正常サンプルと異常サンプルの両方を含む未ラベルのストリーミングデータを活用することで、その能力の検査と改善を行う。
限られたトレーニングサンプルを用いた性能向上のために,ImageNetで事前学習したCNNから抽出したマルチスケール特徴埋め込みを用いて,ロバストな表現を得る。
論文 参考訳(メタデータ) (2024-03-27T02:24:00Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。