論文の概要: LatentMem: Customizing Latent Memory for Multi-Agent Systems
- arxiv url: http://arxiv.org/abs/2602.03036v1
- Date: Tue, 03 Feb 2026 03:03:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-04 18:37:15.209876
- Title: LatentMem: Customizing Latent Memory for Multi-Agent Systems
- Title(参考訳): LatentMem: マルチエージェントシステムのための遅延メモリのカスタマイズ
- Authors: Muxin Fu, Guibin Zhang, Xiangyuan Xue, Yafu Li, Zefeng He, Siyuan Huang, Xiaoye Qu, Yu Cheng, Yang Yang,
- Abstract要約: トークン効率のよいエージェント固有のメモリをカスタマイズするための学習可能なマルチエージェントメモリフレームワークであるLatentMemを提案する。
具体的には、生の相互作用軌跡を軽量な形式で記憶する体験銀行と、検索された経験とエージェント固有の文脈に基づいて条件付けられたコンパクトな潜時記憶を合成するメモリ作曲家とを備える。
- 参考スコア(独自算出の注目度): 44.59989123744384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language model (LLM)-powered multi-agent systems (MAS) demonstrate remarkable collective intelligence, wherein multi-agent memory serves as a pivotal mechanism for continual adaptation. However, existing multi-agent memory designs remain constrained by two fundamental bottlenecks: (i) memory homogenization arising from the absence of role-aware customization, and (ii) information overload induced by excessively fine-grained memory entries. To address these limitations, we propose LatentMem, a learnable multi-agent memory framework designed to customize agent-specific memories in a token-efficient manner. Specifically, LatentMem comprises an experience bank that stores raw interaction trajectories in a lightweight form, and a memory composer that synthesizes compact latent memories conditioned on retrieved experience and agent-specific contexts. Further, we introduce Latent Memory Policy Optimization (LMPO), which propagates task-level optimization signals through latent memories to the composer, encouraging it to produce compact and high-utility representations. Extensive experiments across diverse benchmarks and mainstream MAS frameworks show that LatentMem achieves a performance gain of up to $19.36$% over vanilla settings and consistently outperforms existing memory architectures, without requiring any modifications to the underlying frameworks.
- Abstract(参考訳): 大規模言語モデル (LLM) を用いたマルチエージェントシステム (MAS) は、マルチエージェントメモリが連続的な適応のための重要なメカニズムであることを示す。
しかし、既存のマルチエージェントメモリ設計は、以下の2つの基本的なボトルネックによって制約されている。
一 役割意識のカスタマイズがないことによる記憶の均質化
(II)過度にきめ細かいメモリエントリによって引き起こされる情報過負荷。
これらの制約に対処するため,トークン効率のよいエージェント固有のメモリをカスタマイズするための学習可能なマルチエージェントメモリフレームワークであるLatentMemを提案する。
具体的には、生の相互作用軌跡を軽量な形式で記憶する体験銀行と、検索された経験とエージェント固有の文脈に基づいて条件付けられたコンパクトな潜時記憶を合成するメモリ作曲家とを備える。
さらに、潜時記憶によるタスクレベルの最適化信号を作曲家に伝播させ、コンパクトかつ高ユーティリティな表現を推奨する潜時記憶ポリシー最適化(LMPO)を導入する。
さまざまなベンチマークとメインストリームのMASフレームワークにわたる大規模な実験により、LatntMemはバニラ設定よりも最大19.36$%のパフォーマンス向上を実現し、基盤となるフレームワークの変更を必要とせず、既存のメモリアーキテクチャを一貫して上回っている。
関連論文リスト
- The AI Hippocampus: How Far are We From Human Memory? [77.04745635827278]
インプリシットメモリは、事前訓練されたトランスフォーマーの内部パラメータに埋め込まれた知識を指す。
明示メモリは、動的でクエリ可能な知識表現でモデル出力を増大させるように設計された外部ストレージと検索コンポーネントを含んでいる。
エージェントメモリは、自律エージェント内に永続的、時間的に拡張されたメモリ構造を導入する。
論文 参考訳(メタデータ) (2026-01-14T03:24:08Z) - EvolMem: A Cognitive-Driven Benchmark for Multi-Session Dialogue Memory [63.84216832544323]
EvolMemは、大規模言語モデル(LLM)とエージェントシステムのマルチセッションメモリ機能を評価するための新しいベンチマークである。
このベンチマークを構築するために,話題から始まる生成と物語から着想を得た変換からなるハイブリッドデータ合成フレームワークを提案する。
広範囲な評価により、LLMが全てのメモリ次元で常に他よりも優れていることが分かる。
論文 参考訳(メタデータ) (2026-01-07T03:14:42Z) - Agentic Memory: Learning Unified Long-Term and Short-Term Memory Management for Large Language Model Agents [57.38404718635204]
大規模言語モデル (LLM) エージェントは、有限コンテキストウィンドウによる長距離推論において基本的な制限に直面している。
既存のメソッドは通常、長期記憶(LTM)と短期記憶(STM)を独立したコンポーネントとして扱う。
本稿では,エージェントのポリシーに LTM と STM 管理を直接統合する統合フレームワークである Agentic Memory (AgeMem) を提案する。
論文 参考訳(メタデータ) (2026-01-05T08:24:16Z) - Memory in the Age of AI Agents [217.9368190980982]
この研究は、現在のエージェントメモリ研究の最新の展望を提供することを目的としている。
我々は,エージェントメモリ,すなわちトークンレベル,パラメトリック,潜時メモリの3つの支配的実現を同定する。
実用的な開発を支援するため、メモリベンチマークとオープンソースフレームワークの包括的な概要をコンパイルする。
論文 参考訳(メタデータ) (2025-12-15T17:22:34Z) - MemGen: Weaving Generative Latent Memory for Self-Evolving Agents [57.1835920227202]
本稿では,エージェントに人間的な認知機能を持たせる動的生成記憶フレームワークであるMemGenを提案する。
MemGenは、エージェントが推論を通して潜在記憶をリコールし、増大させ、記憶と認知の密接なサイクルを生み出すことを可能にする。
論文 参考訳(メタデータ) (2025-09-29T12:33:13Z) - SEDM: Scalable Self-Evolving Distributed Memory for Agents [23.182291416527764]
SEDMは、メモリをパッシブリポジトリからアクティブな自己最適化コンポーネントに変換する検証可能で適応的なフレームワークである。
また,SEDMは,強いメモリベースラインに比べてトークンオーバーヘッドを低減しつつ,推論精度を向上することを示した。
結果は、SEDMをオープンエンドのマルチエージェントコラボレーションのためのスケーラブルで持続可能なメモリメカニズムとして強調する。
論文 参考訳(メタデータ) (2025-09-11T14:37:37Z) - Intrinsic Memory Agents: Heterogeneous Multi-Agent LLM Systems through Structured Contextual Memory [3.8482387279540555]
LLM(Large Language Models)上に構築されたマルチエージェントシステムは、複雑な協調的な問題解決に非常に有望である。
しかし、それらは、メモリの一貫性を損なうコンテキストウィンドウの制限、役割の順守、手続き的整合性といった根本的な課題に直面します。
本稿では,エージェント固有のメモリを通じて,これらの制限に対処する新しいフレームワークであるIntrinsic Memory Agentsを紹介する。
論文 参考訳(メタデータ) (2025-08-12T15:05:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。