論文の概要: PaperX: A Unified Framework for Multimodal Academic Presentation Generation with Scholar DAG
- arxiv url: http://arxiv.org/abs/2602.03866v2
- Date: Thu, 05 Feb 2026 03:45:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 14:11:23.874467
- Title: PaperX: A Unified Framework for Multimodal Academic Presentation Generation with Scholar DAG
- Title(参考訳): PaperX:Scholar DAGを用いたマルチモーダル学術プレゼンテーション生成のための統一フレームワーク
- Authors: Tao Yu, Minghui Zhang, Zhiqing Cui, Hao Wang, Zhongtian Luo, Shenghua Chai, Junhao Gong, Yuzhao Peng, Yuxuan Zhou, Yujia Yang, Zhenghao Zhang, Haopeng Jin, Xinming Wang, Yufei Xiong, Jiabing Yang, Jiahao Yuan, Hanqing Wang, Hongzhu Yi, Yan Huang, Liang Wang,
- Abstract要約: 本稿では,学術的なプレゼンテーション生成を構造的変換とレンダリングのプロセスとしてモデル化する統合フレームワークPaperXを紹介する。
PaperXは単一のソースから多種多様な高品質の出力を生成する。
- 参考スコア(独自算出の注目度): 22.64989700220684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transforming scientific papers into multimodal presentation content is essential for research dissemination but remains labor intensive. Existing automated solutions typically treat each format as an isolated downstream task, leading to redundant processing and semantic inconsistency. We introduce PaperX, a unified framework that models academic presentation generation as a structural transformation and rendering process. Central to our approach is the Scholar DAG, an intermediate representation that decouples the paper's logical structure from its final presentation syntax. By applying adaptive graph traversal strategies, PaperX generates diverse, high quality outputs from a single source. Comprehensive evaluations demonstrate that our framework achieves the state of the art performance in content fidelity and aesthetic quality while significantly improving cost efficiency compared to specialized single task agents.
- Abstract(参考訳): 科学論文をマルチモーダルなプレゼンテーションコンテンツに変換することは、研究の普及に不可欠であるが、労働集約的なままである。
既存の自動化ソリューションは、通常、各フォーマットを独立した下流タスクとして扱う。
本稿では,学術的なプレゼンテーション生成を構造的変換とレンダリングのプロセスとしてモデル化する統合フレームワークPaperXを紹介する。
我々のアプローチの中心はScholar DAGであり、これは論文の論理構造を最終的な表現構文から切り離す中間表現である。
適応的なグラフトラバース戦略を適用することで、PaperXは単一のソースから多様な高品質な出力を生成する。
包括的評価により,本フレームワークは,専門的な単一タスクエージェントと比較して,コスト効率を著しく向上させながら,内容の忠実さと美的品質の最先端性能を実現していることが示された。
関連論文リスト
- Paper2Web: Let's Make Your Paper Alive! [51.75896846964824]
学術Webページ生成を評価するためのベンチマークデータセットとフレームワークであるPaper2Webを紹介する。
PWAgentは、科学論文をインタラクティブでマルチメディアに富んだ学術ホームページに変換する自律パイプラインである。
論文 参考訳(メタデータ) (2025-10-17T17:35:58Z) - Scaling Beyond Context: A Survey of Multimodal Retrieval-Augmented Generation for Document Understanding [61.36285696607487]
文書理解は、財務分析から科学的発見への応用に不可欠である。
現在のアプローチでは、OCRベースのパイプラインがLarge Language Models(LLM)やネイティブのMultimodal LLMs(MLLM)に制限されている。
Retrieval-Augmented Generation (RAG)は、外部データの基底モデルを支援するが、文書のマルチモーダルな性質は、テキスト、テーブル、チャート、レイアウトを組み合わせることで、より高度なパラダイムを必要とする。
論文 参考訳(メタデータ) (2025-10-17T02:33:16Z) - Table2LaTeX-RL: High-Fidelity LaTeX Code Generation from Table Images via Reinforced Multimodal Language Models [53.03670032402846]
視覚的な入力から,高品質で出版可能なテーブルの再構築を自動化することを目的として,表画像からコード生成への課題に対処する。
このタスクの中心的な課題は、大きなサイズ、深くネストされた構造、セマンティックにリッチか不規則かという複雑なテーブルを正確に扱うことである。
本稿では,大規模テーブル・トゥ・ラデータセット上で事前学習したMLLMを微調整する,強化型マルチモーダル大規模言語モデル(MLLM)を提案する。
論文 参考訳(メタデータ) (2025-09-22T11:13:48Z) - PosterForest: Hierarchical Multi-Agent Collaboration for Scientific Poster Generation [28.02969134846803]
文書構造と視覚的・テキスト的関係を共同で符号化する階層型中間表現であるtextitPoster Tree を導入する。
本フレームワークでは,コンテンツ要約とレイアウト計画を専門とするエージェントが反復的に協調し,相互にフィードバックを提供するマルチエージェント協調戦略を採用している。
論文 参考訳(メタデータ) (2025-08-29T15:36:06Z) - DREAM: Document Reconstruction via End-to-end Autoregressive Model [53.51754520966657]
本稿では、文書再構成に特化した革新的な自己回帰モデルについて述べる。
文書再構成タスクの標準化定義を確立し,文書類似度基準(DSM)とDocRec1Kデータセットを導入し,タスクの性能を評価する。
論文 参考訳(メタデータ) (2025-07-08T09:24:07Z) - HIP: Hierarchical Point Modeling and Pre-training for Visual Information Extraction [24.46493675079128]
OCRに依存した手法はオフラインのOCRエンジンに依存し、OCRに依存しない手法は解釈性に欠ける出力や幻覚的内容を含む出力を生成する。
我々は, 階層的視点をモデルとしたHIPを提案し, エンドツーエンドのVIEタスクの階層的性質をよりよく適合させる。
具体的には、このような階層的な点は柔軟に符号化され、その後所望のテキスト書き起こし、地域の中心、エンティティのカテゴリにデコードされる。
論文 参考訳(メタデータ) (2024-11-02T05:00:13Z) - LayeredDoc: Domain Adaptive Document Restoration with a Layer Separation Approach [9.643486775455841]
本稿では,文書画像復元システムにおける領域適応性を向上するテキスト・グラフィック・レイヤ分離手法を提案する。
本稿では,2つのレイヤ情報を利用するLayeredDocを提案する。第1のターゲットは粗粒のグラフィックコンポーネントであり,第2のレイヤは機械印刷されたテキストコンテンツを洗練する。
本研究では,本研究のために開発された新しい実世界のデータセットであるLayeredDocDBを用いて,定性的かつ定量的にアプローチを評価する。
論文 参考訳(メタデータ) (2024-06-12T19:41:01Z) - GlobalDoc: A Cross-Modal Vision-Language Framework for Real-World Document Image Retrieval and Classification [8.880856137902947]
我々は、自己教師型で事前訓練されたクロスモーダルトランスフォーマーベースのアーキテクチャであるGlobalDocを紹介する。
GlobalDocは、言語と視覚表現を統合することによって、よりリッチなセマンティックな概念の学習を改善する。
適切な評価のために,Few-Shot Document Image Classification (DIC)とContent-based Document Image Retrieval (DIR)の2つの新しい文書レベル下流VDUタスクを提案する。
論文 参考訳(メタデータ) (2023-09-11T18:35:14Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASSは、統合されたセマンティックグラフに基づく抽象的な要約を促進するためのフレームワークである。
文書表現と要約生成の両方を改善するために,グラフベースのエンコーダデコーダモデルを提案する。
実験結果から,提案アーキテクチャは長期文書および複数文書要約タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2021-05-25T16:20:48Z) - Leveraging Graph to Improve Abstractive Multi-Document Summarization [50.62418656177642]
我々は、文書のよく知られたグラフ表現を活用することができる、抽象的多文書要約(MDS)モデルを開発する。
本モデルでは,長い文書の要約に欠かせない文書間関係を捉えるために,文書の符号化にグラフを利用する。
また,このモデルでは,要約生成プロセスの導出にグラフを利用することが可能であり,一貫性と簡潔な要約を生成するのに有用である。
論文 参考訳(メタデータ) (2020-05-20T13:39:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。