論文の概要: A Domain-Specific Curated Benchmark for Entity and Document-Level Relation Extraction
- arxiv url: http://arxiv.org/abs/2602.04320v1
- Date: Wed, 04 Feb 2026 08:38:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.436432
- Title: A Domain-Specific Curated Benchmark for Entity and Document-Level Relation Extraction
- Title(参考訳): エンティティとドキュメントレベルの関係抽出のためのドメイン特化ベンチマーク
- Authors: Marco Martinelli, Stefano Marchesin, Vanessa Bonato, Giorgio Maria Di Nunzio, Nicola Ferro, Ornella Irrera, Laura Menotti, Federica Vezzani, Gianmaria Silvello,
- Abstract要約: 我々は,1,600以上のPubMed抽象概念に基づくベンチマークであるGutBrainIEを紹介した。
内脳軸に基盤を置きながら、ベンチマークのリッチなスキーマ、複数のタスク、高度にキュレーションされた弱教師付きデータの組み合わせにより、ドメイン間でのバイオメディカルIEシステムの開発と評価に広く適用することができる。
- 参考スコア(独自算出の注目度): 7.874719206422571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information Extraction (IE), encompassing Named Entity Recognition (NER), Named Entity Linking (NEL), and Relation Extraction (RE), is critical for transforming the rapidly growing volume of scientific publications into structured, actionable knowledge. This need is especially evident in fast-evolving biomedical fields such as the gut-brain axis, where research investigates complex interactions between the gut microbiota and brain-related disorders. Existing biomedical IE benchmarks, however, are often narrow in scope and rely heavily on distantly supervised or automatically generated annotations, limiting their utility for advancing robust IE methods. We introduce GutBrainIE, a benchmark based on more than 1,600 PubMed abstracts, manually annotated by biomedical and terminological experts with fine-grained entities, concept-level links, and relations. While grounded in the gut-brain axis, the benchmark's rich schema, multiple tasks, and combination of highly curated and weakly supervised data make it broadly applicable to the development and evaluation of biomedical IE systems across domains.
- Abstract(参考訳): 名前付きエンティティ認識(NER)、名前付きエンティティリンク(NEL)、関係抽出(RE)を含む情報抽出(IE)は、急速に増大する科学出版物の体積を構造化された行動可能な知識に変換する上で重要である。
この必要性は、腸-脳軸のような急速に進化する生体医学分野において特に顕著であり、腸内微生物と脳関連疾患の間の複雑な相互作用を研究する研究である。
しかし、既存のバイオメディカルIEベンチマークはスコープが狭く、遠くに管理されたり、自動生成されたアノテーションに大きく依存しているため、堅牢なIEメソッドの進歩に限界がある。
我々は,1,600以上のPubMed抽象概念に基づくベンチマークであるGutBrainIEを紹介した。
内脳軸に基盤を置きながら、ベンチマークのリッチなスキーマ、複数のタスク、高度にキュレーションされた弱教師付きデータの組み合わせにより、ドメイン間でのバイオメディカルIEシステムの開発と評価に広く適用することができる。
関連論文リスト
- Knowledge Graph-Driven Retrieval-Augmented Generation: Integrating Deepseek-R1 with Weaviate for Advanced Chatbot Applications [45.935798913942904]
構造化バイオメディカル知識と大規模言語モデル(LLM)を組み合わせた革新的なフレームワークを提案する。
本システムでは,年齢関連黄斑変性(AMD)に関する医学的要約から因果関係を同定・精査し,詳細な知識グラフを作成する。
ベクトルベース検索と局所展開言語モデルを用いて,臨床証拠を直接参照して,文脈的に関連性があり,検証可能な応答を生成する。
論文 参考訳(メタデータ) (2025-02-16T12:52:28Z) - A Self-guided Multimodal Approach to Enhancing Graph Representation Learning for Alzheimer's Diseases [45.59286036227576]
グラフニューラルネットワーク(GNN)は、不規則に構造化されたデータを扱うように設計された強力な機械学習モデルである。
本稿では,ドメイン知識を自律的にモデル開発プロセスに組み込む自己誘導型知識注入型マルチモーダルGNNを提案する。
提案手法は,ドメイン知識を自然言語として概念化し,未処理の知識を活用できる専門的なマルチモーダルGNNを導入する。
論文 参考訳(メタデータ) (2024-12-09T05:16:32Z) - BioMNER: A Dataset for Biomedical Method Entity Recognition [25.403593761614424]
本稿では,生物医学的手法による実体認識のための新しいデータセットを提案する。
我々は、人間のアノテーションを支援するために、自動的なBioMethodエンティティ認識と情報検索システムを採用している。
実験の結果,言語モデルのパラメータ数が大きくなると,実体抽出パターンの有効同化が著しく阻害されることが判明した。
論文 参考訳(メタデータ) (2024-06-28T16:34:24Z) - HiPrompt: Few-Shot Biomedical Knowledge Fusion via Hierarchy-Oriented
Prompting [33.1455954220194]
HiPromptは、監督効率の良い知識融合フレームワークである。
階層指向のプロンプトを通じて、大規模言語モデルの数発の推論能力を引き出す。
収集したKG-Hi-BKFベンチマークデータセットの実験的結果は、HiPromptの有効性を示している。
論文 参考訳(メタデータ) (2023-04-12T16:54:26Z) - EBOCA: Evidences for BiOmedical Concepts Association Ontology [55.41644538483948]
本論文は,生物医学領域の概念とそれらの関連性を記述するオントロジーであるEBOCAと,それらの関連性を支持するエビデンスを提案する。
DISNETのサブセットから得られるテストデータとテキストからの自動アソシエーション抽出が変換され、実際のシナリオで使用できる知識グラフが作成されるようになった。
論文 参考訳(メタデータ) (2022-08-01T18:47:03Z) - BioRED: A Comprehensive Biomedical Relation Extraction Dataset [6.915371362219944]
我々は,複数の実体型と関係対を持つ第一種バイオメディカルREコーパスであるBioREDを提示する。
それぞれの関係を、新しい発見知識または以前に知られていた背景知識を記述するものとしてラベル付けし、自動化アルゴリズムが新規情報と背景情報を区別できるようにする。
以上の結果から,既存の手法は NER タスクでは高い性能が得られるが,RE タスクには多くの改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2022-04-08T19:23:49Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
我々は、AI支援薬物発見のための体系的なOODデータセットキュレーターおよびベンチマークであるTarmOODを提案する。
DrugOODには、ベンチマークプロセスを完全に自動化するオープンソースのPythonパッケージが付属している。
我々は、薬物標的結合親和性予測という、AIDDにおける最も重要な問題の1つに焦点を当てる。
論文 参考訳(メタデータ) (2022-01-24T12:32:48Z) - Knowledge-Rich Self-Supervised Entity Linking [58.838404666183656]
Knowledge-RIch Self-Supervision(KRISSBERT$)は400万のUMLSエンティティのためのユニバーサルエンティティリンカーである。
提案手法はゼロショット法と少数ショット法を仮定し,利用可能であればエンティティ記述やゴールドレファレンスラベルを簡単に組み込むことができる。
ラベル付き情報を一切使わずに400万のUMLSエンティティのためのユニバーサルエンティティリンカである$tt KRISSBERT$を生成する。
論文 参考訳(メタデータ) (2021-12-15T05:05:12Z) - BioIE: Biomedical Information Extraction with Multi-head Attention
Enhanced Graph Convolutional Network [9.227487525657901]
本稿では,バイオメディカルテキストと非構造化医療報告から関係を抽出するハイブリッドニューラルネットワークであるバイオメディカル情報抽出を提案する。
本研究は,2つの主要な生医学的関係抽出タスク,化学物質とタンパク質の相互作用,およびクロスホスピタル・パン・カンノロジー報告コーパスについて検討した。
論文 参考訳(メタデータ) (2021-10-26T13:19:28Z) - Cross-Domain Data Integration for Named Entity Disambiguation in
Biomedical Text [5.008513565240167]
本稿では,一般的なテキスト知識ベースから医療領域へ構造的知識を伝達するクロスドメインデータ統合手法を提案する。
我々は,我々の統合手法を利用して構造資源を増強し,事前学習のための大規模なバイオメディカルNEDデータセットを生成する。
MedMentions と BC5CDR という2つのベンチマーク医学NEDデータセット上で, 最先端のパフォーマンスを実現するために, 構造知識を注入した事前学習モデルを構築した。
論文 参考訳(メタデータ) (2021-10-15T17:38:16Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
人体における薬物と標的(DTI)の相互作用は、生物医学や応用において重要な役割を担っている。
毎年何百万もの論文がバイオメディカル分野で出回っているので、文学からDTIの知識を自動的に発見することは、業界にとって急激な需要となっている。
生成的アプローチを用いて,この課題に対する最初のエンドツーエンドソリューションについて検討する。
我々はDTI三重項をシーケンスとみなし、Transformerベースのモデルを使ってエンティティや関係の詳細なアノテーションを使わずに直接生成する。
論文 参考訳(メタデータ) (2021-09-27T17:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。