論文の概要: On the use of LLMs to generate a dataset of Neural Networks
- arxiv url: http://arxiv.org/abs/2602.04388v1
- Date: Wed, 04 Feb 2026 10:13:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.469088
- Title: On the use of LLMs to generate a dataset of Neural Networks
- Title(参考訳): ニューラルネットワークのデータセット生成におけるLLMの利用について
- Authors: Nadia Daoudi, Jordi Cabot,
- Abstract要約: 大規模な言語モデルを利用して、バリデーションのベンチマークとして機能するニューラルネットワークのデータセットを自動的に生成します。
合計608個のサンプルが生成され、それぞれが正確な設計選択に従っている。
ニューラルネットワークの信頼性と適応性の研究を進めるコミュニティを支援するために、データセットを公開しています。
- 参考スコア(独自算出の注目度): 1.6594245810929042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks are increasingly used to support decision-making. To verify their reliability and adaptability, researchers and practitioners have proposed a variety of tools and methods for tasks such as NN code verification, refactoring, and migration. These tools play a crucial role in guaranteeing both the correctness and maintainability of neural network architectures, helping to prevent implementation errors, simplify model updates, and ensure that complex networks can be reliably extended and reused. Yet, assessing their effectiveness remains challenging due to the lack of publicly diverse datasets of neural networks that would allow systematic evaluation. To address this gap, we leverage large language models (LLMs) to automatically generate a dataset of neural networks that can serve as a benchmark for validation. The dataset is designed to cover diverse architectural components and to handle multiple input data types and tasks. In total, 608 samples are generated, each conforming to a set of precise design choices. To further ensure their consistency, we validate the correctness of the generated networks using static analysis and symbolic tracing. We make the dataset publicly available to support the community in advancing research on neural network reliability and adaptability.
- Abstract(参考訳): ニューラルネットワークは、意思決定をサポートするためにますます使われています。
信頼性と適応性を検証するため、研究者と実践者はNNコード検証、リファクタリング、マイグレーションといったタスクのためのさまざまなツールと方法を提案している。
これらのツールは、ニューラルネットワークアーキテクチャの正確性と保守性の両方を保証する上で、重要な役割を果たす。
しかし、その効果を評価することは、体系的な評価を可能にするような、広く多種多様なニューラルネットワークデータセットが欠如しているため、依然として困難である。
このギャップに対処するために,大規模な言語モデル(LLM)を活用して,検証のベンチマークとして機能するニューラルネットワークのデータセットを自動的に生成する。
このデータセットは、さまざまなアーキテクチャコンポーネントをカバーし、複数の入力データタイプとタスクを処理するように設計されている。
合計608個のサンプルが生成され、それぞれが正確な設計選択に従っている。
それらの整合性をさらに確保するため,静的解析とシンボリックトレースを用いて,生成されたネットワークの正当性を検証した。
ニューラルネットワークの信頼性と適応性の研究を進めるコミュニティを支援するために、データセットを公開しています。
関連論文リスト
- Intrusion Detection in Heterogeneous Networks with Domain-Adaptive Multi-Modal Learning [1.03590082373586]
我々は,マルチモーダル学習とドメイン適応手法を統合したディープニューラルネットワークを開発した。
我々のモデルは、様々なソースから連続的にデータを処理し、複数のデータセットから学習し、様々な特徴空間に適応できるようにします。
実験により,提案モデルがネットワーク侵入の分類において,ベースラインニューラルモデルよりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2025-08-05T14:46:03Z) - Exploring Neural Network Pruning with Screening Methods [3.443622476405787]
現代のディープラーニングモデルは数千万のパラメータを持ち、推論プロセスはリソース集約化されている。
本稿では,非必須パラメータを除去するネットワーク・プルーニング・フレームワークの提案と評価を行う。
提案するフレームワークは,従来のネットワークと比較して,競争力のあるリーンネットワークを生成する。
論文 参考訳(メタデータ) (2025-02-11T02:31:04Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
本稿では,ネットワーク侵入検知システム(NIDS)のためのニューラルネットワークについて述べる。
ディープパケットインスペクションに頼らず、ほとんどのNIDSデータセットで見つからず、従来のフローコレクタから簡単に取得できる11の機能しか必要としない。
報告されたトレーニング精度は、提案手法の99%を超え、ニューラルネットワークの入力特性は20に満たない。
論文 参考訳(メタデータ) (2024-10-24T11:36:19Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - Topological Uncertainty: Monitoring trained neural networks through
persistence of activation graphs [0.9786690381850356]
産業アプリケーションでは、オープンワールド設定から得られるデータは、ネットワークがトレーニングされたベンチマークデータセットと大きく異なる可能性がある。
活性化グラフのトポロジ的特性に基づいて訓練されたニューラルネットワークを監視する手法を開発している。
論文 参考訳(メタデータ) (2021-05-07T14:16:03Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - Identifying Critical Neurons in ANN Architectures using Mixed Integer
Programming [11.712073757744452]
深層ニューラルネットワークアーキテクチャにおいて,各ニューロンに重要なスコアを割り当てるための混合整数プログラム(MIP)を導入する。
我々は、トレーニングされたニューラルネットワークの全体的な精度を維持するために必要な臨界ニューロンの数(すなわち、高いスコアを持つ)を最小限に抑えるために、ソルバを駆動する。
論文 参考訳(メタデータ) (2020-02-17T21:32:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。