論文の概要: Separation-Utility Pareto Frontier: An Information-Theoretic Characterization
- arxiv url: http://arxiv.org/abs/2602.04408v2
- Date: Thu, 05 Feb 2026 17:37:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 16:28:44.945687
- Title: Separation-Utility Pareto Frontier: An Information-Theoretic Characterization
- Title(参考訳): 分離ユーティリティParetoフロンティア:情報理論による評価
- Authors: Shizhou Xu,
- Abstract要約: 本研究は, 実用性と分離の最適トレードオフ, 真の結果を条件に, 感度特性から予測的独立性を必要とする公正基準について検討する。
本研究は,条件付き相互情報(CMI)に基づく実験正則化器の開発である。
この研究は、深層学習における分離を強制するための、証明可能で安定的で柔軟なアプローチを提供する。
- 参考スコア(独自算出の注目度): 1.4213973379473657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the Pareto frontier (optimal trade-off) between utility and separation, a fairness criterion requiring predictive independence from sensitive attributes conditional on the true outcome. Through an information-theoretic lens, we prove a characterization of the utility-separation Pareto frontier, establish its concavity, and thereby prove the increasing marginal cost of separation in terms of utility. In addition, we characterize the conditions under which this trade-off becomes strict, providing a guide for trade-off selection in practice. Based on the theoretical characterization, we develop an empirical regularizer based on conditional mutual information (CMI) between predictions and sensitive attributes given the true outcome. The CMI regularizer is compatible with any deep model trained via gradient-based optimization and serves as a scalar monitor of residual separation violations, offering tractable guarantees during training. Finally, numerical experiments support our theoretical findings: across COMPAS, UCI Adult, UCI Bank, and CelebA, the proposed method substantially reduces separation violations while matching or exceeding the utility of established baseline methods. This study thus offers a provable, stable, and flexible approach to enforcing separation in deep learning.
- Abstract(参考訳): 実用性と分離性の間のパレートフロンティア(最適トレードオフ)、真の結果に条件づけられた機密属性から予測的独立性を必要とする公正基準について検討する。
情報理論レンズを用いて実用性分離パレートフロンティアのキャラクタリゼーションを証明し,その凹凸性を確立し,実用性の観点からの分離の限界コストの増加を証明した。
さらに,このトレードオフが厳格になる条件を特徴付け,実際にトレードオフ選択を行うためのガイドを提供する。
理論的特徴に基づいて,実結果から得られた予測属性と感度属性の条件付き相互情報(CMI)に基づく経験的正則化器を開発した。
CMIレギュレータは、勾配に基づく最適化によってトレーニングされたディープモデルと互換性があり、残留分離違反のスカラーモニターとして機能し、トレーニング中にトラクタブルな保証を提供する。
最後に,CompAS, UCIアダルト, UCI Bank, CelebA にまたがって, 提案手法は, 確立されたベースライン法を適合又は超過しながら, 分離違反を大幅に低減する。
この研究は、深層学習における分離を強制するための、証明可能で安定的で柔軟なアプローチを提供する。
関連論文リスト
- Is Softmax Loss All You Need? A Principled Analysis of Softmax-family Loss [91.61796429377041]
ソフトマックスの損失は、分類とランキングのタスクにおいて最も広く使用されるサロゲートの目標の1つである。
本研究では,異なるサロゲートが分類とランキングの指標との整合性を達成するかどうかを考察し,それらの勾配ダイナミクスを分析して,異なる収束挙動を明らかにする。
本研究は,大規模機械学習アプリケーションにおける損失選択の実践的ガイダンスとして,原則的基礎を確立した。
論文 参考訳(メタデータ) (2026-01-30T09:24:52Z) - Reliable and Reproducible Demographic Inference for Fairness in Face Analysis [63.46525489354455]
本稿では、従来のエンドツーエンドトレーニングをモジュラートランスファー学習アプローチで置き換える、完全に再現可能なDAIパイプラインを提案する。
このパイプラインは、正確性、公正性、そしてアイデンティティ内整合性によって定義される、新たに導入された堅牢性の概念の3つの次元にわたって監査する。
以上の結果から,提案手法は特に民族性において,強い基準線を上回り,その特性はより困難であることが示唆された。
論文 参考訳(メタデータ) (2025-10-23T12:22:02Z) - Measure-Theoretic Anti-Causal Representation Learning [29.12751904333385]
反因果設定(ラベルは逆ではなく特徴を引き起こす)における因果表現学習は、固有の課題を提示する。
本稿では,反因果表現学習のための新しい測度理論フレームワークである反因果不変抽象化(ACIA)を提案する。
ACIAは2段階の設計を採用し、低レベルの表現はラベルがどのように観測を生成しているかを捉え、高レベルの表現は環境固有のバリエーションを越えて安定した因果パターンを学習する。
論文 参考訳(メタデータ) (2025-10-16T22:13:05Z) - Distributionally Robust Federated Learning with Outlier Resilience [8.69285602685459]
本研究では, 分散的頑健なフェデレーション学習について, 明確な外部レジリエンスを用いて検討した。
我々は、ロバスト性証明を許容するトラクタブルなラグランジアンペナルティ最適化として問題を再構築する。
この改革に基づいて,分散外乱フェデレーション学習アルゴリズムを提案し,その収束保証を確立する。
論文 参考訳(メタデータ) (2025-09-29T08:42:12Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - On the Role of Surrogates in Conformal Inference of Individual Causal Effects [0.0]
UnderlineEfficient IunderlineNdividual UnderlineCausal UnderlineEffects (SCIENCE) に対する UnderlineSurrogate-assisted Underline Conformal Underline Inference を導入する。
SCIENCEは、個々の治療効果(ITE)に対してより効率的な予測間隔を構築するために設計されたフレームワークである。
これは第3相であるModerna COVE COVID-19ワクチンの臨床試験に適用される。
論文 参考訳(メタデータ) (2024-12-16T21:36:11Z) - Flexible Nonparametric Inference for Causal Effects under the Front-Door Model [2.6900047294457683]
本研究では, 平均治療効果, 平均治療効果の両面から, 新規な1段階, 目標最小損失ベース推定装置を開発した。
我々の推定器は観測されたデータ分布のパラメータ化に基づいて構築され、メディエータ密度を完全に回避するアプローチを含む。
因果効果推定器の効率を向上させるためにこれらの制約をどのように活用できるかを示す。
論文 参考訳(メタデータ) (2023-12-15T22:04:53Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Pseudo-Spherical Contrastive Divergence [119.28384561517292]
エネルギーベースモデルの最大学習確率を一般化するために,擬球面コントラスト分散(PS-CD)を提案する。
PS-CDは難解な分割関数を避け、学習目的の一般化されたファミリーを提供する。
論文 参考訳(メタデータ) (2021-11-01T09:17:15Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
経験値関数の新しい正規化器を導入し、ワッサーシュタイン分布のロバストな値関数を下限とすることを示す。
強化学習における$textitexternalな不確実性に対処するための実用的なツールとして正規化を使用することを提案する。
論文 参考訳(メタデータ) (2020-03-05T19:56:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。