論文の概要: Bounded-Abstention Multi-horizon Time-series Forecasting
- arxiv url: http://arxiv.org/abs/2602.04714v1
- Date: Wed, 04 Feb 2026 16:25:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-05 19:45:11.618215
- Title: Bounded-Abstention Multi-horizon Time-series Forecasting
- Title(参考訳): 境界減衰型マルチホライゾン時系列予測
- Authors: Luca Stradiotti, Laurens Devos, Anna Monreale, Jesse Davis, Andrea Pugnana,
- Abstract要約: マルチホライズン予測設定における棄権学習の問題を定式化する。
我々は、その構造的性質が、よりリッチな禁忌問題を許容していることを示します。
本稿では,モデルがマルチホライズン予測を棄却する方法に関する3つの自然概念を提案する。
- 参考スコア(独自算出の注目度): 18.61785802499021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-horizon time-series forecasting involves simultaneously making predictions for a consecutive sequence of subsequent time steps. This task arises in many application domains, such as healthcare and finance, where mispredictions can have a high cost and reduce trust. The learning with abstention framework tackles these problems by allowing a model to abstain from offering a prediction when it is at an elevated risk of making a misprediction. Unfortunately, existing abstention strategies are ill-suited for the multi-horizon setting: they target problems where a model offers a single prediction for each instance. Hence, they ignore the structured and correlated nature of the predictions offered by a multi-horizon forecaster. We formalize the problem of learning with abstention for multi-horizon forecasting setting and show that its structured nature admits a richer set of abstention problems. Concretely, we propose three natural notions of how a model could abstain for multi-horizon forecasting. We theoretically analyze each problem to derive the optimal abstention strategy and propose an algorithm that implements it. Extensive evaluation on 24 datasets shows that our proposed algorithms significantly outperforms existing baselines.
- Abstract(参考訳): マルチホライゾン時系列予測は、連続した連続した時間ステップの予測を同時に行う。
このタスクは、医療や金融といった多くのアプリケーション領域で発生し、誤った予測がコストが高く、信頼を減らすことができる。
無視フレームワークによる学習は、モデルが誤った予測を行うリスクが高い場合に予測を提供することを禁止し、これらの問題に対処する。
残念ながら、既存の棄権戦略はマルチホライゾン設定に不適であり、モデルが各インスタンスに対して単一の予測を提供する問題をターゲットにしている。
したがって、マルチホライズン予測器によって提供される予測の構造的・相関性は無視される。
マルチホライズン予測設定における禁忌学習の問題を形式化し、その構造的性質がより豊かな禁忌問題を許容していることを示す。
具体的には,モデルがマルチホライズン予測を棄却する方法に関する3つの自然概念を提案する。
我々は,各問題を理論的に解析し,最適な禁忌戦略を導出し,それを実装するアルゴリズムを提案する。
24個のデータセットの大規模な評価により,提案アルゴリズムは既存のベースラインを著しく上回ることがわかった。
関連論文リスト
- Next-Generation Conflict Forecasting: Unleashing Predictive Patterns through Spatiotemporal Learning [0.0]
本研究では、3つの異なるタイプの暴力を事前に36ヶ月予測するためのニューラルネットワークアーキテクチャを提案する。
このモデルは確率的分類と回帰タスクを共同で実行し、将来の事象の予測と予測等級を生成する。
警告システム、人道的対応計画、証拠に基づく平和構築イニシアチブのための有望なツールである。
論文 参考訳(メタデータ) (2025-06-08T20:42:29Z) - ProbTS: Benchmarking Point and Distributional Forecasting across Diverse Prediction Horizons [23.9530536685668]
本稿では,基本的な予測ニーズを評価するための統一プラットフォームとして設計されたベンチマークツールであるProbTSを紹介する。
異なる予測条件から生じる特徴的データの特徴を識別する。
本稿では, 時系列予測の最新モデルについて検討し, 方法論的強度と弱点の分析も適用可能であることを明らかにする。
論文 参考訳(メタデータ) (2023-10-11T12:48:45Z) - Performative Time-Series Forecasting [64.03865043422597]
我々は,機械学習の観点から,パフォーマンス時系列予測(PeTS)を定式化する。
本稿では,予測分布シフトに対する遅延応答の概念を活用する新しい手法であるFeature Performative-Shifting(FPS)を提案する。
新型コロナウイルスの複数の時系列モデルと交通予報タスクを用いた総合的な実験を行った。
論文 参考訳(メタデータ) (2023-10-09T18:34:29Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - Low Rank Forecasting [0.0]
我々は,過去の値を用いて,ベクトル時系列の未来の複数の値を予測する問題について考察する。
私たちの焦点は、低いランクの予測者であり、予測を2段階に分割することです。
予測整合性の概念を導入する。これは,異なるタイミングで同じ値の推定値が一貫したことを意味する。
論文 参考訳(メタデータ) (2021-01-29T05:59:19Z) - From Goals, Waypoints & Paths To Long Term Human Trajectory Forecasting [54.273455592965355]
将来の軌道の不確実性は、(a)エージェントに知られているが、モデルに未知な情報源、例えば長期目標や(b)エージェントとモデルの両方に未知な情報源、例えば他のエージェントの意図や既約乱数不確定性などである。
我々は,長期目標における多モータリティと,経路ポイントや経路における多モータリティによるアレタリック不確実性を通じて,てんかん不確かさをモデル化する。
また,この二分法を実証するために,従来の作業よりも1分間,桁長の予測地平線を有する,新しい長期軌跡予測設定を提案する。
論文 参考訳(メタデータ) (2020-12-02T21:01:29Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。