論文の概要: Individual Fairness In Strategic Classification
- arxiv url: http://arxiv.org/abs/2602.05084v1
- Date: Wed, 04 Feb 2026 22:09:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-06 18:49:08.641084
- Title: Individual Fairness In Strategic Classification
- Title(参考訳): 戦略分類における個人的公正性
- Authors: Zhiqun Zuo, Mohammad Mahdi Khalili,
- Abstract要約: 個人が機械学習(ML)決定に影響を与えるように特徴を変更する戦略分類では、批判的公正性の課題が提示される。
しきい値に基づく分類を解析し、決定論的しきい値が個々の公正性に反することを示す。
ランダム化分類器が個別の公平性を保証し、これらの条件を利用して最適かつ個別のランダム化分類器を見つける条件を導入する。
実世界のデータセットに対する実験により,本手法が効果的に不公平を軽減し,公平性と精度のトレードオフを改善することが確認された。
- 参考スコア(独自算出の注目度): 7.903744240517792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Strategic classification, where individuals modify their features to influence machine learning (ML) decisions, presents critical fairness challenges. While group fairness in this setting has been widely studied, individual fairness remains underexplored. We analyze threshold-based classifiers and prove that deterministic thresholds violate individual fairness. Then, we investigate the possibility of using a randomized classifier to achieve individual fairness. We introduce conditions under which a randomized classifier ensures individual fairness and leverage these conditions to find an optimal and individually fair randomized classifier through a linear programming problem. Additionally, we demonstrate that our approach can be extended to group fairness notions. Experiments on real-world datasets confirm that our method effectively mitigates unfairness and improves the fairness-accuracy trade-off.
- Abstract(参考訳): 個人が機械学習(ML)決定に影響を与えるように特徴を変更する戦略分類では、批判的公正性の課題が提示される。
この設定におけるグループフェアネスは広く研究されているが、個々のフェアネスは未発見のままである。
しきい値に基づく分類を解析し、決定論的しきい値が個々の公正性に反することを示す。
そこで本研究では,ランダム化分類器を用いて個別の公平性を実現する可能性について検討する。
ランダム化分類器が個別の公平性を保証し、これらの条件を利用して線形プログラミング問題を通じて最適かつ個別のランダム化分類器を求める条件を導入する。
さらに,本手法が群フェアネスの概念にまで拡張可能であることを示す。
実世界のデータセットに対する実験により,本手法が効果的に不公平を軽減し,公平性と精度のトレードオフを改善することが確認された。
関連論文リスト
- FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated Learning [23.38141950440522]
我々はFedFACTという制御可能なグループフェアネス校正フレームワークを提案する。
FedFACTは、大域的および局所的公正性の制約の下でベイズ最適分類器を識別する。
我々は,FedFACTが精度とグローバル・ローカル・フェアネスのバランスをとる上で,ベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2025-06-04T09:39:57Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
センシティブな属性の無意識下でのグループフェアネスを測定する問題に取り組む。
定量化手法は, フェアネスと無意識の問題に対処するのに特に適していることを示す。
論文 参考訳(メタデータ) (2021-09-17T13:45:46Z) - On the Fairness of Causal Algorithmic Recourse [36.519629650529666]
グループレベルでの公平度基準と個人レベルでの公平度基準を提案する。
ここでは,会話の公平さは予測の公平さと相補的であることを示す。
本稿では, 社会的介入によって, データ生成プロセスの公正性違反に対処できるかどうかを論じる。
論文 参考訳(メタデータ) (2020-10-13T16:35:06Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - Towards Threshold Invariant Fair Classification [10.317169065327546]
本稿では、決定しきい値とは無関係に、異なるグループ間で公平な性能を強制する、しきい値不変公平性の概念を紹介する。
実験結果から,提案手法は,公平性を実現するために設計された機械学習モデルの閾値感度を緩和するために有効であることが示された。
論文 参考訳(メタデータ) (2020-06-18T16:49:46Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Learning Individually Fair Classifier with Path-Specific Causal-Effect
Constraint [31.86959207229775]
本稿では,個々に公平な分類器を学習するための枠組みを提案する。
個人不公平(PIU)の確率を定義し、データから推定できるPIUの上界がゼロに近いように制御される最適化問題を解く。
実験結果から,本手法は精度のわずかなコストで,個別に公平な分類器を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-02-17T02:46:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。