論文の概要: EEG Emotion Classification Using an Enhanced Transformer-CNN-BiLSTM Architecture with Dual Attention Mechanisms
- arxiv url: http://arxiv.org/abs/2602.06411v1
- Date: Fri, 06 Feb 2026 06:05:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-09 22:18:26.253572
- Title: EEG Emotion Classification Using an Enhanced Transformer-CNN-BiLSTM Architecture with Dual Attention Mechanisms
- Title(参考訳): デュアルアテンション機構を持つ拡張トランスフォーマーCNN-BiLSTMアーキテクチャを用いた脳波感情分類
- Authors: S M Rakib UI Karim, Wenyi Lu, Diponkor Bala, Rownak Ara Rasul, Sean Goggins,
- Abstract要約: 本研究では,ハイブリッドなディープラーニングアーキテクチャが脳波データの感情分類性能とロバスト性を向上させるかを検討する。
本稿では, 畳み込み特徴抽出, 双方向時間モデル, 自己保持機構と正規化戦略を組み合わせたハイブリッドモデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG)-based emotion recognition plays a critical role in affective computing and emerging decision-support systems, yet remains challenging due to high-dimensional, noisy, and subject-dependent signals. This study investigates whether hybrid deep learning architectures that integrate convolutional, recurrent, and attention-based components can improve emotion classification performance and robustness in EEG data. We propose an enhanced hybrid model that combines convolutional feature extraction, bidirectional temporal modeling, and self-attention mechanisms with regularization strategies to mitigate overfitting. Experiments conducted on a publicly available EEG dataset spanning three emotional states (neutral, positive, and negative) demonstrate that the proposed approach achieves state-of-the-art classification performance, significantly outperforming classical machine learning and neural baselines. Statistical tests confirm the robustness of these performance gains under cross-validation. Feature-level analyses further reveal that covariance-based EEG features contribute most strongly to emotion discrimination, highlighting the importance of inter-channel relationships in affective modeling. These findings suggest that carefully designed hybrid architectures can effectively balance predictive accuracy, robustness, and interpretability in EEG-based emotion recognition, with implications for applied affective computing and human-centered intelligent systems.
- Abstract(参考訳): 脳波に基づく感情認識は、感情コンピューティングや新たな意思決定支援システムにおいて重要な役割を担っているが、高次元、雑音、主観に依存した信号のために依然として困難である。
本研究では、畳み込み、反復、注意に基づくコンポーネントを統合したハイブリッドディープラーニングアーキテクチャが、脳波データにおける感情分類性能と堅牢性を向上させることができるかどうかを検討する。
本稿では, 畳み込み特徴抽出, 双方向時間モデル, 自己保持機構と正規化戦略を組み合わせたハイブリッドモデルを提案する。
3つの感情状態(中性、肯定的、否定的)にまたがるパブリックな脳波データセットで実施された実験は、提案手法が最先端の分類性能を達成し、古典的な機械学習とニューラルベースラインを著しく上回ることを示した。
統計テストは、クロスバリデーションの下でのこれらの性能向上の堅牢性を確認します。
特徴レベルの分析により、共分散に基づく脳波は感情の識別に最も強く寄与し、感情モデルにおけるチャネル間関係の重要性が強調される。
これらの結果は,脳波に基づく感情認識における予測精度,頑健性,解釈可能性のバランスを,慎重に設計したハイブリッドアーキテクチャが効果的にバランスできることを示唆している。
関連論文リスト
- E^2-LLM: Bridging Neural Signals and Interpretable Affective Analysis [54.763420895859035]
脳波からの感情分析のための最初のMLLMフレームワークであるELLM2-EEG-to-Emotion Large Language Modelを提案する。
ELLMは学習可能なプロジェクション層を通じて、トレーニング済みのEEGエンコーダとQベースのLLMを統合し、マルチステージのトレーニングパイプラインを使用する。
7つの感情カテゴリーにまたがるデータセット実験により, ELLM2-EEG-to-Emotion Large Language Modelは感情分類において優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2026-01-11T13:21:20Z) - Unveiling the Actual Performance of Neural-based Models for Equation Discovery on Graph Dynamical Systems [45.11208589443806]
グラフのためのKAN(Kolmogorov-Arnold Networks)は、その固有の解釈可能性を活用するように設計されている。
カンは基礎となる記号方程式の同定に成功し、既存の基底線をはるかに上回った。
本研究は,モデル表現性と解釈可能性のトレードオフを明らかにするための実践的ガイドを提供する。
論文 参考訳(メタデータ) (2025-08-25T16:25:50Z) - LEL: A Novel Lipschitz Continuity-constrained Ensemble Learning Model for EEG-based Emotion Recognition [6.9292405290420005]
脳波に基づく感情認識を強化する新しいフレームワークであるLEL(Lipschitz continuity-constrained Ensemble Learning)を導入する。
3つの公開ベンチマークデータセットの実験結果は、LELの最先端性能を実証した。
論文 参考訳(メタデータ) (2025-04-12T09:41:23Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
我々は、クロスオブジェクト感情認識のための訓練済みモデルに基づくMultimodal Mood Readerを開発した。
このモデルは、大規模データセットの事前学習を通じて、脳波信号の普遍的な潜在表現を学習する。
公開データセットに関する大規模な実験は、クロスオブジェクト感情認識タスクにおけるMood Readerの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-05-28T14:31:11Z) - A Supervised Information Enhanced Multi-Granularity Contrastive Learning Framework for EEG Based Emotion Recognition [14.199298112101802]
本研究では,脳波に基づく感情認識(SICLEER, Supervised Info-enhanced Contrastive Learning)のための新しいコントラスト学習フレームワークを提案する。
自己教師付きコントラスト学習損失と教師付き分類損失を組み合わせた共同学習モデルを提案する。
論文 参考訳(メタデータ) (2024-05-12T11:51:00Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
我々は,クロスコーパス脳波に基づく感情認識に対処するために,特徴アライメントを用いた新しいコントラスト学習フレームワークを提案する。
事前学習段階では、脳波信号の一般化可能な時間周波数表現を特徴付けるために、共同領域コントラスト学習戦略を導入する。
微調整の段階では、JCFAは脳電極間の構造的接続を考慮した下流タスクと共に洗練される。
論文 参考訳(メタデータ) (2024-04-15T08:21:17Z) - EEGFormer: Towards Transferable and Interpretable Large-Scale EEG
Foundation Model [39.363511340878624]
大規模複合脳波データに基づいて事前学習した脳波基礎モデル,すなわちEEGFormerを提案する。
本モデルの有効性を検証するため,様々な下流タスクにおいて広範囲に評価し,異なる転送条件下での性能を評価する。
論文 参考訳(メタデータ) (2024-01-11T17:36:24Z) - Graph Convolutional Network with Connectivity Uncertainty for EEG-based
Emotion Recognition [20.655367200006076]
本研究では,脳波信号の空間依存性と時間スペクトルの相対性を表す分布に基づく不確実性手法を提案する。
グラフ混合手法は、遅延接続エッジを強化し、ノイズラベル問題を緩和するために用いられる。
感情認識タスクにおいて、SEEDとSEEDIVという2つの広く使われているデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2023-10-22T03:47:11Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。