論文の概要: Learning Human Visual Attention on 3D Surfaces through Geometry-Queried Semantic Priors
- arxiv url: http://arxiv.org/abs/2602.06419v1
- Date: Fri, 06 Feb 2026 06:15:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-09 22:18:26.257688
- Title: Learning Human Visual Attention on 3D Surfaces through Geometry-Queried Semantic Priors
- Title(参考訳): 幾何学的セマンティック前駆体による3次元表面上の人間の視覚的注意の学習
- Authors: Soham Pahari, Sandeep C. Kumain,
- Abstract要約: 本稿では,幾何処理と意味認識の相互作用を形式化する2重ストリームアーキテクチャであるSemGeo-AttentionNetを紹介する。
我々は、強化学習を通じて時間的スキャンパス生成にフレームワークを拡張した。
SAL3D, NUS3D, 3DVAデータセットの評価は大幅に改善されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human visual attention on three-dimensional objects emerges from the interplay between bottom-up geometric processing and top-down semantic recognition. Existing 3D saliency methods rely on hand-crafted geometric features or learning-based approaches that lack semantic awareness, failing to explain why humans fixate on semantically meaningful but geometrically unremarkable regions. We introduce SemGeo-AttentionNet, a dual-stream architecture that explicitly formalizes this dichotomy through asymmetric cross-modal fusion, leveraging diffusion-based semantic priors from geometry-conditioned multi-view rendering and point cloud transformers for geometric processing. Cross-attention ensures geometric features query semantic content, enabling bottom-up distinctiveness to guide top-down retrieval. We extend our framework to temporal scanpath generation through reinforcement learning, introducing the first formulation respecting 3D mesh topology with inhibition-of-return dynamics. Evaluation on SAL3D, NUS3D and 3DVA datasets demonstrates substantial improvements, validating how cognitively motivated architectures effectively model human visual attention on three-dimensional surfaces.
- Abstract(参考訳): ボトムアップ幾何処理とトップダウン意味認識の相互作用から3次元物体に対する人間の視覚的注意が現れる。
既存の3Dサリエンシ法は、意味的認識に欠ける手作りの幾何学的特徴や学習に基づくアプローチに依存しており、なぜ人間が意味的に意味があるが幾何学的に意味のない領域に固執するのかを説明できない。
本稿では,この二分法を非対称なクロスモーダル融合により明示的に定式化し,幾何条件のマルチビューレンダリングと点雲変換器の拡散に基づくセマンティックプリミティブを活用する二分法であるSemGeo-AttentionNetを紹介する。
クロスアテンションは幾何学的特徴のクエリセマンティックコンテンツを保証し、ボトムアップの独特性によってトップダウン検索をガイドする。
我々は、強化学習を通じて時間的スキャンパス生成に拡張し、3次元メッシュトポロジーに反する最初の定式化を導入し、リターンダイナミクスを阻害する。
SAL3D, NUS3Dおよび3DVAデータセットの評価は、認知的に動機付けられたアーキテクチャが3次元表面における人間の視覚的注意を効果的にモデル化する方法を検証し、大幅な改善を示す。
関連論文リスト
- Hierarchical Neural Semantic Representation for 3D Semantic Correspondence [72.8101601086805]
階層型ニューラルセマンティック表現(HNSR)を設計し,高次構造と多分解能局所幾何学的特徴を捉える。
第2に,グローバルなセマンティック特徴を用いた粗いセマンティック対応を確立する,プログレッシブなグローバル-ローカルマッチング戦略を設計する。
第3に,本フレームワークはトレーニングフリーで,様々なトレーニング済みの3D生成バックボーンと広範囲に互換性があり,多様な形状カテゴリにまたがる強力な一般化が示されている。
論文 参考訳(メタデータ) (2025-09-22T07:23:07Z) - Seeing 3D Through 2D Lenses: 3D Few-Shot Class-Incremental Learning via Cross-Modal Geometric Rectification [59.17489431187807]
本稿では,CLIPの階層的空間意味論を活用することで3次元幾何学的忠実度を高めるフレームワークを提案する。
本手法は3次元のクラスインクリメンタル学習を著しく改善し,テクスチャバイアスに対して優れた幾何コヒーレンスとロバスト性を実現する。
論文 参考訳(メタデータ) (2025-09-18T13:45:08Z) - GRACE: Estimating Geometry-level 3D Human-Scene Contact from 2D Images [54.602947113980655]
人景接触の幾何レベルを推定することは、特定の接触面点を3次元の人間ジオメトリに接することを目的としている。
GRACE(Geometry-level Reasoning for 3D Human-scene Contact Estimation)は,3次元接触推定のための新しいパラダイムである。
ポイントクラウドエンコーダ/デコーダアーキテクチャと階層的特徴抽出と融合モジュールが組み込まれている。
論文 参考訳(メタデータ) (2025-05-10T09:25:46Z) - Shape from Semantics: 3D Shape Generation from Multi-View Semantics [30.969299308083723]
既存の3D再構成手法では, 3次元画像, 3次元点雲, 形状輪郭, 単一意味論などのガイダンスを用いて3次元表面を復元する。
図形や外観が、異なる視点から見ると、与えられたテキストの意味と一致した3Dモデルを作成することを目的として、新しい3Dモデリングタスク「Shape from Semantics'」を提案する。
論文 参考訳(メタデータ) (2025-02-01T07:51:59Z) - Geometry-guided Feature Learning and Fusion for Indoor Scene Reconstruction [14.225228781008209]
本稿では3次元シーン再構成のための新しい幾何学的統合機構を提案する。
提案手法は,特徴学習,特徴融合,ネットワーク監視という3段階の3次元幾何学を取り入れている。
論文 参考訳(メタデータ) (2024-08-28T08:02:47Z) - Cross-Dimensional Refined Learning for Real-Time 3D Visual Perception
from Monocular Video [2.2299983745857896]
本稿では3次元シーンの幾何学的構造と意味的ラベルを協調的に知覚する新しいリアルタイム能動的学習法を提案する。
本稿では,3次元メッシュと3次元セマンティックラベリングの両方をリアルタイムに抽出する,エンドツーエンドのクロスディメンテーションニューラルネットワーク(CDRNet)を提案する。
論文 参考訳(メタデータ) (2023-03-16T11:53:29Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - Learning 3D Face Reconstruction with a Pose Guidance Network [49.13404714366933]
ポーズ誘導ネットワーク(PGN)を用いた単眼3次元顔再構成学習のための自己指導型学習手法を提案する。
まず,従来のパラメトリックな3次元顔の学習手法におけるポーズ推定のボトルネックを明らかにし,ポーズパラメータの推定に3次元顔のランドマークを活用することを提案する。
我々のデザインしたPGNでは、完全にラベル付けされた3Dランドマークと無制限にラベル付けされた未使用の顔画像で両方の顔から学習できる。
論文 参考訳(メタデータ) (2020-10-09T06:11:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。