論文の概要: On the Convergence of Multicalibration Gradient Boosting
- arxiv url: http://arxiv.org/abs/2602.06773v1
- Date: Fri, 06 Feb 2026 15:29:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-09 22:18:26.444319
- Title: On the Convergence of Multicalibration Gradient Boosting
- Title(参考訳): 多重校正グラディエントブースティングの収束性について
- Authors: Daniel Haimovich, Fridolin Linder, Lorenzo Perini, Niek Tax, Milan Vojnovic,
- Abstract要約: 多重校正勾配向上のための収束保証を提供することで、二乗誤差損失を伴う回帰のギャップを埋める。
連続する予測更新の規模は$O(1/sqrtT)$で減衰し、これはラウンド上の多重校正誤差に束縛される同じ収束率を意味する。
- 参考スコア(独自算出の注目度): 13.103291011255202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multicalibration gradient boosting has recently emerged as a scalable method that empirically produces approximately multicalibrated predictors and has been deployed at web scale. Despite this empirical success, its convergence properties are not well understood. In this paper, we bridge the gap by providing convergence guarantees for multicalibration gradient boosting in regression with squared-error loss. We show that the magnitude of successive prediction updates decays at $O(1/\sqrt{T})$, which implies the same convergence rate bound for the multicalibration error over rounds. Under additional smoothness assumptions on the weak learners, this rate improves to linear convergence. We further analyze adaptive variants, showing local quadratic convergence of the training loss, and we study rescaling schemes that preserve convergence. Experiments on real-world datasets support our theory and clarify the regimes in which the method achieves fast convergence and strong multicalibration.
- Abstract(参考訳): マルチキャリブレーション・グラデーション・ブースティングは、最近、およそマルチキャリブレーションされた予測器を経験的に生成し、Webスケールでデプロイするスケーラブルな手法として登場した。
この経験的成功にもかかわらず、その収束性はよく理解されていない。
本稿では,2乗誤差損失を伴う回帰の多重校正勾配向上のための収束保証を提供することにより,このギャップを埋める。
逐次予測更新の規模は$O(1/\sqrt{T})$で減衰し、これはラウンド上の多重校正誤差に束縛された同じ収束率を意味する。
弱い学習者の滑らかさを仮定すると、この値は線形収束に改善される。
さらに,学習損失の局所的な2次収束を示す適応的変種を解析し,収束を保った再スケーリングスキームについて検討した。
実世界のデータセットの実験は、我々の理論を支持し、この手法が高速収束と強い多重校正を実現する体制を明らかにする。
関連論文リスト
- Revisiting Convergence: Shuffling Complexity Beyond Lipschitz Smoothness [50.78508362183774]
シャッフル型勾配法はその単純さと迅速な経験的性能のために実践的に好まれる。
リプシッツ条件は一般的な機械学習スキームでは満たされないことが多い。
論文 参考訳(メタデータ) (2025-07-11T15:36:48Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
シャッフルに基づく変種(ミニバッチと局所ランダムリシャッフル)について検討する。
ポリアック・ロジャシエヴィチ条件を満たす滑らかな函数に対して、これらのシャッフル型不変量(英語版)(shuffling-based variants)がそれらの置換式よりも早く収束することを示す収束境界を得る。
我々は, 同期シャッフル法と呼ばれるアルゴリズムの修正を提案し, ほぼ均一な条件下では, 下界よりも収束速度が速くなった。
論文 参考訳(メタデータ) (2021-10-20T02:25:25Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
本稿では,SGDA と SCO の最終的な収束保証として,期待されるコヒーレンシティ条件を導入し,その利点を説明する。
定常的なステップサイズを用いた場合、両手法の線形収束性を解の近傍に証明する。
我々の収束保証は任意のサンプリングパラダイムの下で保たれ、ミニバッチの複雑さに関する洞察を与える。
論文 参考訳(メタデータ) (2021-06-30T18:32:46Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - The Implicit Bias of Gradient Descent on Separable Data [44.98410310356165]
予測器は最大マージン(シャープマージンSVM)解の方向へ収束することを示す。
これは、トレーニングエラーがゼロになった後もロジスティックまたはクロスエントロピー損失を最適化し続ける利点を説明するのに役立つ。
論文 参考訳(メタデータ) (2017-10-27T21:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。