論文の概要: $\partial$CBDs: Differentiable Causal Block Diagrams
- arxiv url: http://arxiv.org/abs/2602.07581v1
- Date: Sat, 07 Feb 2026 15:17:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.707112
- Title: $\partial$CBDs: Differentiable Causal Block Diagrams
- Title(参考訳): $\partial$CBDs: Differentiable Causal Block Diagrams
- Authors: Thomas Beckers, Ján Drgoňa, Truong X. Nghiem,
- Abstract要約: 我々は3つの視点を統合した統一形式である微分可能な因果ブロック図を導入する。
提案手法はCBDの構成構造と実行セマンティクスを維持している。
また,残差ベースの契約を,自動微分に適合するトラジェクトリレベルの証明書として導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern cyber-physical systems (CPS) integrate physics, computation, and learning, demanding modeling frameworks that are simultaneously composable, learnable, and verifiable. Yet existing approaches treat these goals in isolation: causal block diagrams (CBDs) support modular system interconnections but lack differentiability for learning; differentiable programming (DP) enables end-to-end gradient-based optimization but provides limited correctness guarantees; while contract-based verification frameworks remain largely disconnected from data-driven model refinement. To address these limitations, we introduce differentiable causal block diagrams ($\partial$CBDs), a unifying formalism that integrates these three perspectives. Our approach (i) retains the compositional structure and execution semantics of CBDs, (ii) incorporates assume--guarantee (A--G) contracts for modular correctness reasoning, and (iii) introduces residual-based contracts as differentiable, trajectory-level certificates compatible with automatic differentiation (AD), enabling gradient-based optimization and learning. Together, these elements enable a scalable, verifiable, and trainable modeling pipeline that preserves causality and modularity while supporting data-, physics-, and constraint-informed optimization for CPS.
- Abstract(参考訳): 現代のサイバー物理システム(CPS)は、物理、計算、学習を統合し、同時に構成可能、学習可能、検証可能なモデリングフレームワークを要求する。
因果ブロックダイアグラム(CBD)はモジュラーシステム相互接続をサポートするが、学習の微分性に欠ける。 微分可能プログラミング(DP)は、エンドツーエンドの勾配ベースの最適化を実現するが、正確性には制限がある。
これらの制限に対処するために、これらの3つの視点を統合する統一形式である微分可能な因果ブロック図(\partial$CBDs)を導入する。
私たちのアプローチ
i)CBDの構成構造と実行セマンティクスを保持する。
(ii)モジュール正当性推論のための前提-保証契約(A--G)を組み込んで、
(iii) 残差ベースの契約を、自動微分(AD)と互換性のある、微分可能な軌道レベルの証明書として導入し、勾配ベースの最適化と学習を可能にする。
これらの要素は、スケーラブルで検証可能なトレーニング可能なモデリングパイプラインを可能にし、CPSのデータ-、物理-、制約インフォームド最適化をサポートしながら因果性とモジュール性を保存する。
関連論文リスト
- An Integrated Fusion Framework for Ensemble Learning Leveraging Gradient Boosting and Fuzzy Rule-Based Models [59.13182819190547]
ファジィ規則に基づくモデルは解釈可能性に優れ、様々な分野に広く応用されている。
複雑な設計仕様や大規模データセットのスケーラビリティといった課題に直面している。
本稿では,モデル性能と解釈可能性を高めるために,両パラダイムの強みを融合した統合統合フレームワークを提案する。
論文 参考訳(メタデータ) (2025-11-11T10:28:23Z) - Modular Delta Merging with Orthogonal Constraints: A Scalable Framework for Continual and Reversible Model Composition [0.0]
既存のモデルマージと継続的学習へのアプローチは、しばしばタスクの干渉、破滅的な忘れ込み、あるいは可逆性の欠如に悩まされる。
本稿では, 拡張性, 干渉フリー, 微調整モデルの構成が可能な新しいフレームワークである Orthogonal Constraints (MDM-OC) を用いた Modular Delta Merging を提案する。
論文 参考訳(メタデータ) (2025-07-28T17:08:49Z) - Continuous Knowledge-Preserving Decomposition with Adaptive Layer Selection for Few-Shot Class-Incremental Learning [73.59672160329296]
CKPD-FSCILは、事前訓練された重量の未使用容量を解放する統合フレームワークである。
本手法は,適応性と知識保持の両面で,最先端の手法より一貫して優れている。
論文 参考訳(メタデータ) (2025-01-09T07:18:48Z) - AdaCBM: An Adaptive Concept Bottleneck Model for Explainable and Accurate Diagnosis [38.16978432272716]
CLIPやConcept Bottleneck Models(CBM)といったビジョン言語モデルの統合は、ディープニューラルネットワーク(DNN)の決定を説明するための有望なアプローチを提供する。
CLIPは説明可能性とゼロショット分類の両方を提供するが、ジェネリックイメージとテキストデータによる事前トレーニングは、その分類精度と医療画像診断タスクへの適用性を制限する可能性がある。
本稿では, 単純な線形分類システムとして, 幾何学的表現のレンズを通して CBM フレームワークを再検討することによって, 従来と異なるアプローチをとる。
論文 参考訳(メタデータ) (2024-08-04T11:59:09Z) - Decision Stacks: Flexible Reinforcement Learning via Modular Generative
Models [37.79386205079626]
Decision Stacksは、ゴール条件付きポリシーエージェントを3つの生成モジュールに分解する生成フレームワークである。
これらのモジュールは、教師の強制によって並列に学習できる独立した生成モデルを通じて、観察、報酬、行動の時間的進化をシミュレートする。
我々のフレームワークは、アーキテクチャバイアス、最適化目標とダイナミクス、ドメイン間の転送可能性、推論速度といった重要な要素を考慮するために、個々のモジュールを設計する際の表現性と柔軟性の両方を保証します。
論文 参考訳(メタデータ) (2023-06-09T20:52:16Z) - Incorporating Domain Knowledge in Deep Neural Networks for Discrete
Choice Models [0.5801044612920815]
本稿では,DCMにおけるデータ駆動型アプローチの可能性を拡張するフレームワークを提案する。
これには、必要な関係を表す擬似データサンプルと、その実現度を測定する損失関数が含まれる。
ケーススタディは、このフレームワークの個別選択分析の可能性を示している。
論文 参考訳(メタデータ) (2023-05-30T12:53:55Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
人為的なシステムのレジリエンスを、予期せぬ事象に対して向上させるためのエンドツーエンドのフレームワークを実証する。
このフレームワークは物理ベースのデジタルツインモデルと,リアルタイム故障診断,予後,再構成を行う3つのモジュールに基づいている。
論文 参考訳(メタデータ) (2022-08-30T20:16:17Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-06-16T16:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。