論文の概要: Probability Hacking and the Design of Trustworthy ML for Signal Processing in C-UAS: A Scenario Based Method
- arxiv url: http://arxiv.org/abs/2602.08086v1
- Date: Sun, 08 Feb 2026 19:01:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:24.976308
- Title: Probability Hacking and the Design of Trustworthy ML for Signal Processing in C-UAS: A Scenario Based Method
- Title(参考訳): C-UASにおける確率ハッキングと信号処理のための信頼できるMLの設計-シナリオベース手法
- Authors: Liisa Janssens, Laura Middeldorp,
- Abstract要約: 人工知能(AI)のような、Emerging and Disruptive Technologies(EDT)によるC-UASの強化は、より効果的な対策につながる可能性がある。
本稿では,AIのサブセットである機械学習(ML)を付加したC-UASにシナリオベース手法を適用し,信号処理能力を向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to counter the various threats manifested by Unmanned Aircraft Systems (UAS) adequately, specialized Counter Unmanned Aircraft Systems (C-UAS) are required. Enhancing C-UAS with Emerging and Disruptive Technologies (EDTs) such as Artificial Intelligence (AI) can lead to more effective countermeasures. In this paper a scenario-based method is applied to C-UAS augmented with Machine Learning (ML), a subset of AI, that can enhance signal processing capabilities. Via the scenarios-based method we frame in this paper probability hacking as a challenge and identify requirements which can be implemented in existing Rule of Law mechanisms to prevent probability hacking. These requirements strengthen the trustworthiness of the C-UAS, which feed into justified trust - a key to successful Human-Autonomy Teaming, in civil and military contexts. Index Terms: C-UAS, Scenario-based method, Emerging and Disruptive Technologies, Probability hacking, Trustworthiness.
- Abstract(参考訳): 非有人航空機システム(UAS)の様々な脅威に適切に対処するためには、特殊対人無人航空機システム(C-UAS)が必要である。
人工知能(AI)のような、Emerging and Disruptive Technologies(EDT)によるC-UASの強化は、より効果的な対策につながる可能性がある。
本稿では,AIのサブセットである機械学習(ML)を付加したC-UASにシナリオベース手法を適用し,信号処理能力を向上する。
本論文のシナリオベース手法は, 確率ハッキングを課題とし, 既存のルール・オブ・ロー・メカニズムに実装可能な要件を特定し, 確率ハッキングを防止する。
これらの要求はC-UASの信頼性を強化し、市民的・軍事的文脈において、正当性のある信頼が成功の鍵となる。
インデックス用語:C-UAS、シナリオベースのメソッド、Emerging and Disruptive Technologies、確率ハッキング、信頼性。
関連論文リスト
- ORCA -- An Automated Threat Analysis Pipeline for O-RAN Continuous Development [57.61878484176942]
Open-Radio Access Network (O-RAN)は、多くのソフトウェアコンポーネントをクラウドのようなデプロイメントに統合し、これまで考えられていなかったセキュリティ脅威に無線アクセスネットワークを開放する。
現在の脆弱性評価の実践は、しばしば手動、労働集約、主観的な調査に依存しており、脅威分析の不整合につながる。
人間の介入や関連するバイアスを最小限に抑えるために,自然言語処理(NLP)を活用する自動パイプラインを提案する。
論文 参考訳(メタデータ) (2026-01-20T07:31:59Z) - Towards Verifiably Safe Tool Use for LLM Agents [53.55621104327779]
大規模言語モデル(LLM)ベースのAIエージェントは、データソース、API、検索エンジン、コードサンドボックス、さらにはその他のエージェントなどのツールへのアクセスを可能にすることで、機能を拡張する。
LLMは意図しないツールインタラクションを起動し、機密データを漏洩したり、クリティカルレコードを上書きしたりするリスクを発生させる。
モデルベースセーフガードのようなリスクを軽減するための現在のアプローチは、エージェントの信頼性を高めるが、システムの安全性を保証することはできない。
論文 参考訳(メタデータ) (2026-01-12T21:31:38Z) - Agentic AI for Autonomous Defense in Software Supply Chain Security: Beyond Provenance to Vulnerability Mitigation [0.0]
本論文は,自律型ソフトウェアサプライチェーンセキュリティに基づくエージェント人工知能(AI)の例を含む。
大規模言語モデル(LLM)ベースの推論、強化学習(RL)、マルチエージェント調整を組み合わせている。
その結果、エージェントAIは、自己防衛的で積極的なソフトウェアサプライチェーンへの移行を促進することが示されている。
論文 参考訳(メタデータ) (2025-12-29T14:06:09Z) - Governable AI: Provable Safety Under Extreme Threat Models [31.36879992618843]
我々は、従来の内部制約から外部に強制された構造コンプライアンスに移行するGAI(Governable AI)フレームワークを提案する。
GAIフレームワークは、シンプルで信頼性が高く、完全に決定論的で、強力で、柔軟性があり、汎用的なルール執行モジュール(REM)、ガバナンスルール、AIによる妥協やサブバージョンに対するエンドツーエンドの保護を提供する、統制可能なセキュアなスーパープラットフォーム(GSSP)で構成されている。
論文 参考訳(メタデータ) (2025-08-28T04:22:59Z) - CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus [45.24207460381396]
本稿では,制御領域ネットワーク(CAN)環境向けに設計された新しい侵入検知システム(IDS)を提案する。
RISC-VベースのCAN受信機はgem5シミュレータを用いてシミュレートされ、AES-128暗号化によるCANフレームペイロードをFreeRTOSタスクとして処理する。
結果は、このアプローチがCANセキュリティを大幅に改善し、自動車サイバーセキュリティにおける新たな課題に対処する可能性があることを示唆している。
論文 参考訳(メタデータ) (2025-07-19T20:09:52Z) - An Approach to Technical AGI Safety and Security [72.83728459135101]
我々は、人類を著しく傷つけるのに十分な害のリスクに対処するアプローチを開発する。
私たちは、誤用や悪用に対する技術的なアプローチに重点を置いています。
これらの成分を組み合わせてAGIシステムの安全性を実現する方法について概説する。
論文 参考訳(メタデータ) (2025-04-02T15:59:31Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
本稿では、サイバー攻撃(キャンプ)に対する組織の防御効果を定量化するための、脅威に富んだ確率的アプローチであるサイバー抵抗指数(CRI)を紹介する。
Threat-Intelligence Based Security Assessment (TIBSA) の方法論に基づいて、複雑な脅威のインテリジェンスを、ストックマーケットインデックスに似た、実行可能な統一されたメトリクスに変換する数学的モデルを提示します。
論文 参考訳(メタデータ) (2024-06-27T17:51:48Z) - Mathematical Algorithm Design for Deep Learning under Societal and
Judicial Constraints: The Algorithmic Transparency Requirement [65.26723285209853]
計算モデルにおける透過的な実装が実現可能かどうかを分析するための枠組みを導出する。
以上の結果から,Blum-Shub-Smale Machinesは,逆問題に対する信頼性の高い解法を確立できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-01-18T15:32:38Z) - Scalable AI Safety via Doubly-Efficient Debate [37.25328923531058]
強力な能力を持つ事前訓練されたAIシステムの出現は、AI安全性に対する重要な課題を提起している。
当初のフレームワークは、正直な戦略がAIシステムを指数関数的なステップでシミュレートできるという仮定に基づいていた。
新しいプロトコルを設計することで、これらの課題に対処する方法を示す。
論文 参考訳(メタデータ) (2023-11-23T17:46:30Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
本稿では,無線アクセスネットワーク(RAN)アプリケーションの安全管理のためのシンボル強化学習(SRL)アーキテクチャを提案する。
我々は、ユーザが所定のセルネットワークトポロジに対して高レベルの論理的安全性仕様を指定できる純粋に自動化された手順を提供する。
ユーザがシステムに意図仕様を設定するのを支援するために開発されたユーザインターフェース(UI)を導入し、提案するエージェントの動作の違いを検査する。
論文 参考訳(メタデータ) (2021-06-03T16:45:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。