論文の概要: Nansde-net: A neural sde framework for generating time series with memory
- arxiv url: http://arxiv.org/abs/2602.08182v1
- Date: Mon, 09 Feb 2026 00:53:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.016152
- Title: Nansde-net: A neural sde framework for generating time series with memory
- Title(参考訳): Nansde-net: メモリによる時系列生成のためのニューラルネットワークスデフレームワーク
- Authors: Hiromu Ozai, Kei Nakagawa,
- Abstract要約: NANSDE-NetはニューラルSDEを拡張した生成モデルである。
NANSDE-Net は,SDE-Net の分数を含む既存モデルと一致するか,あるいはより優れていることを示す。
- 参考スコア(独自算出の注目度): 0.6445605125467572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling time series with long- or short-memory characteristics is a fundamental challenge in many scientific and engineering domains. While fractional Brownian motion has been widely used as a noise source to capture such memory effects, its incompatibility with Itô calculus limits its applicability in neural stochastic differential equation~(SDE) frameworks. In this paper, we propose a novel class of noise, termed Neural Network-kernel ARMA-type noise~(NA-noise), which is an Itô-process-based alternative capable of capturing both long- and short-memory behaviors. The kernel function defining the noise structure is parameterized via neural networks and decomposed into a product form to preserve the Markov property. Based on this noise process, we develop NANSDE-Net, a generative model that extends Neural SDEs by incorporating NA-noise. We prove the theoretical existence and uniqueness of the solution under mild conditions and derive an efficient backpropagation scheme for training. Empirical results on both synthetic and real-world datasets demonstrate that NANSDE-Net matches or outperforms existing models, including fractional SDE-Net, in reproducing long- and short-memory features of the data, while maintaining computational tractability within the Itô calculus framework.
- Abstract(参考訳): 長いまたは短いメモリ特性を持つ時系列をモデル化することは、多くの科学・工学分野において根本的な課題である。
分数的なブラウン運動はそのような記憶効果を捉えるためのノイズ源として広く用いられているが、イトー計算との非互換性は神経確率微分方程式~(SDE)フレームワークにおける適用性を制限している。
本稿では,ニューラルネットワークカーネルARMA型ノイズ~(NA-noise)と呼ばれる新しいノイズのクラスを提案する。
ノイズ構造を定義するカーネル関数は、ニューラルネットワークを介してパラメータ化され、マルコフ特性を保持するために製品形式に分解される。
NANSDE-NetはニューラルSDEを拡張した生成モデルである。
軽度の条件下での解の理論的存在と特異性を証明し、トレーニングのための効率的な逆伝播スキームを導出する。
合成と実世界の両方のデータセットにおける実証的な結果から、NANSDE-Netは、Itô計算フレームワーク内で計算的トラクタビリティを維持しながら、データの長メモリと短メモリの機能を再現する際、分数SDE-Netを含む既存のモデルと一致または性能を向上することを示した。
関連論文リスト
- Noise Hypernetworks: Amortizing Test-Time Compute in Diffusion Models [57.49136894315871]
テストタイムスケーリングの新しいパラダイムは、推論モデルと生成視覚モデルにおいて驚くべきブレークスルーをもたらした。
本稿では,テスト時間スケーリングの知識をモデルに組み込むことの課題に対する1つの解決策を提案する。
拡散モデルにおいて、初期入力ノイズを変調するノイズハイパーネットワークにより、報酬誘導試験時間雑音の最適化を行う。
論文 参考訳(メタデータ) (2025-08-13T17:33:37Z) - Fractional Spike Differential Equations Neural Network with Efficient Adjoint Parameters Training [63.3991315762955]
スパイキングニューラルネットワーク(SNN)は、生物学的ニューロンからインスピレーションを得て、脳に似た計算の現実的なモデルを作成する。
既存のほとんどのSNNは、マルコフ特性を持つ一階常微分方程式(ODE)によってモデル化された、神経細胞膜電圧ダイナミクスの単一時間定数を仮定している。
本研究では, 膜電圧およびスパイク列車の長期依存性を分数次力学により捉えるフラクタルSPIKE微分方程式ニューラルネットワーク (fspikeDE) を提案する。
論文 参考訳(メタデータ) (2025-07-22T18:20:56Z) - Parameter Estimation of Long Memory Stochastic Processes with Deep Neural Networks [0.0]
時系列モデルの長いメモリパラメータを推定するために,純粋にディープなニューラルネットワークに基づくアプローチを提案する。
ハースト指数のようなパラメータは、プロセスの長距離依存、粗さ、自己相似性を特徴づけるのに重要である。
論文 参考訳(メタデータ) (2024-10-03T03:14:58Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
スコアベースの拡散のような現在のAIGC法は、迅速性と効率性の点で依然として不足している。
スコアベース拡散のための時間連続型およびアナログ型インメモリ型ニューラル微分方程式解法を提案する。
我々は180nmの抵抗型メモリインメモリ・コンピューティング・マクロを用いて,我々の解を実験的に検証した。
論文 参考訳(メタデータ) (2024-04-08T16:34:35Z) - Neural Generalized Ordinary Differential Equations with Layer-varying
Parameters [1.3691539554014036]
層状ニューラルGODEは標準ニューラルGODEよりも柔軟で汎用的であることを示す。
Neural-GODEは、予測精度でResNetsと互換性を持って実行しながら、計算とメモリの利点を享受する。
論文 参考訳(メタデータ) (2022-09-21T20:02:28Z) - LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data [47.49194807524502]
エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Fractional SDE-Net: Generation of Time Series Data with Long-term Memory [10.267057557137665]
本稿では、fSDE-Net: Neural fractional Differential Equation Networkを提案する。
我々は、fSDE-Netの解法を導出し、解の存在と特異性を理論的に分析する。
実験により,fSDE-Netモデルが分布特性をよく再現できることが実証された。
論文 参考訳(メタデータ) (2022-01-16T05:37:02Z) - Efficient hierarchical Bayesian inference for spatio-temporal regression
models in neuroimaging [6.512092052306553]
例えば、M/EEG逆問題、タスクベースのfMRI分析のためのニューラルネットワークの符号化、温度モニタリングスキームなどがある。
モデルパラメータとノイズの内在的時間的ダイナミクスをモデル化した,新しい階層型フレキシブルベイズフレームワークを考案する。
論文 参考訳(メタデータ) (2021-11-02T15:50:01Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z) - A Distributed Optimisation Framework Combining Natural Gradient with
Hessian-Free for Discriminative Sequence Training [16.83036203524611]
本稿では、ニューラルネットワークトレーニングのための自然勾配およびヘッセンフリー(NGHF)最適化フレームワークを提案する。
これは、自然勾配(ng)法とヘッセンフリー(hf)や他の二次法からの局所曲率情報を組み合わせた線形共役勾配(cg)アルゴリズムに依存している。
さまざまな音響モデルタイプのマルチジャンル放送データセットで実験が報告されています。
論文 参考訳(メタデータ) (2021-03-12T22:18:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。