論文の概要: LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data
- arxiv url: http://arxiv.org/abs/2206.09418v3
- Date: Tue, 7 May 2024 08:54:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 20:52:38.068755
- Title: LordNet: An Efficient Neural Network for Learning to Solve Parametric Partial Differential Equations without Simulated Data
- Title(参考訳): LordNet: シミュレーションデータなしでパラメトリック部分微分方程式を解くための効率的なニューラルネットワーク
- Authors: Xinquan Huang, Wenlei Shi, Xiaotian Gao, Xinran Wei, Jia Zhang, Jiang Bian, Mao Yang, Tie-Yan Liu,
- Abstract要約: エンタングルメントをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
ポアソン方程式と(2Dおよび3D)ナビエ・ストークス方程式を解く実験は、長距離の絡み合いがロードネットによってうまくモデル化できることを示した。
- 参考スコア(独自算出の注目度): 47.49194807524502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural operators, as a powerful approximation to the non-linear operators between infinite-dimensional function spaces, have proved to be promising in accelerating the solution of partial differential equations (PDE). However, it requires a large amount of simulated data, which can be costly to collect. This can be avoided by learning physics from the physics-constrained loss, which we refer to it as mean squared residual (MSR) loss constructed by the discretized PDE. We investigate the physical information in the MSR loss, which we called long-range entanglements, and identify the challenge that the neural network requires the capacity to model the long-range entanglements in the spatial domain of the PDE, whose patterns vary in different PDEs. To tackle the challenge, we propose LordNet, a tunable and efficient neural network for modeling various entanglements. Inspired by the traditional solvers, LordNet models the long-range entanglements with a series of matrix multiplications, which can be seen as the low-rank approximation to the general fully-connected layers and extracts the dominant pattern with reduced computational cost. The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements from the MSR loss can be well modeled by the LordNet, yielding better accuracy and generalization ability than other neural networks. The results show that the Lordnet can be $40\times$ faster than traditional PDE solvers. In addition, LordNet outperforms other modern neural network architectures in accuracy and efficiency with the smallest parameter size.
- Abstract(参考訳): ニューラル作用素は、無限次元函数空間間の非線形作用素の強力な近似として、偏微分方程式(PDE)の解の加速に有望であることが証明されている。
しかし、大量のシミュレートされたデータを必要とするため、収集にはコストがかかる。
これは物理に制約された損失から物理学を学習することで回避できるが、これは離散化されたPDEによって構築された平均2乗残留損失(MSR)である。
我々は,長距離絡み(long-range entanglements)と呼ぶMSR損失の物理的情報を調べ,PDEの空間領域における長距離絡み(long-range entanglements)をモデル化するためにニューラルネットワークが必要とする課題を明らかにする。
この課題に対処するために、様々な絡み合いをモデル化するためのチューナブルで効率的なニューラルネットワークであるLordNetを提案する。
従来の解法にインスパイアされたLordNetは、一連の行列乗法で長距離の絡み合いをモデル化し、一般的な完全連結層に対する低ランク近似と見なすことができ、計算コストを削減して支配的なパターンを抽出する。
Poisson方程式と(2Dおよび3D) Navier-Stokes方程式を解く実験により、MSR損失による長距離の絡み合いは LordNet によってうまくモデル化され、他のニューラルネットワークよりも精度と一般化能力が得られることを示した。
その結果、Lordnetは従来のPDEソルバよりも40\times$高速であることが判明した。
加えて、LordNetは、パラメータサイズが最小の精度と効率で、他の現代的なニューラルネットワークアーキテクチャよりも優れています。
関連論文リスト
- Latent Neural PDE Solver: a reduced-order modelling framework for
partial differential equations [6.173339150997772]
より粗い離散化を伴う潜在空間における系の力学を学習することを提案する。
非線形オートエンコーダは、まずシステムの全順序表現をメッシュ再現空間に投影するように訓練される。
実時間空間で動作するニューラルPDEソルバと比較して, 精度と効率が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-27T19:36:27Z) - Grad-Shafranov equilibria via data-free physics informed neural networks [0.0]
PINNはいくつかの異なる境界条件でGrad-Shafranov方程式を正確かつ効果的に解くことができることを示す。
パラメータ化PINNフレームワークを導入し、入力空間を圧力、アスペクト比、伸長、三角度などの変数を含むように拡張する。
論文 参考訳(メタデータ) (2023-11-22T16:08:38Z) - Deep Learning-based surrogate models for parametrized PDEs: handling
geometric variability through graph neural networks [0.0]
本研究では,時間依存型PDEシミュレーションにおけるグラフニューラルネットワーク(GNN)の可能性について検討する。
本稿では,データ駆動型タイムステッピング方式に基づくサロゲートモデルを構築するための体系的戦略を提案する。
GNNは,計算効率と新たなシナリオへの一般化の観点から,従来の代理モデルに代わる有効な代替手段を提供することができることを示す。
論文 参考訳(メタデータ) (2023-08-03T08:14:28Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
我々は,高次元PDEの効率的かつ高精度な解法に向けて,Latent Spectral Models (LSM) を提案する。
数値解析において古典スペクトル法に着想を得て,潜時空間におけるPDEを解くために,ニューラルスペクトルブロックを設計する。
LSMは、一貫した最先端を実現し、7つのベンチマークで平均11.5%の相対的な利益を得る。
論文 参考訳(メタデータ) (2023-01-30T04:58:40Z) - DOSnet as a Non-Black-Box PDE Solver: When Deep Learning Meets Operator
Splitting [12.655884541938656]
我々はDeep Operator-Splitting Network (DOSnet) と名付けた学習型PDEソルバを開発した。
DOSnetは物理規則から構築され、基礎となるダイナミクスを管理する演算子は学習可能なパラメータを含む。
我々は、演算子分解可能な微分方程式のいくつかのタイプでそれを訓練し、検証する。
論文 参考訳(メタデータ) (2022-12-11T18:23:56Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - PhyCRNet: Physics-informed Convolutional-Recurrent Network for Solving
Spatiotemporal PDEs [8.220908558735884]
偏微分方程式 (Partial differential equation, PDE) は、幅広い分野の問題をモデル化し、シミュレーションする上で基礎的な役割を果たす。
近年のディープラーニングの進歩は、データ駆動逆解析の基盤としてPDEを解くために物理学インフォームドニューラルネットワーク(NN)の大きな可能性を示している。
本稿では,PDEをラベル付きデータなしで解くための物理インフォームド・畳み込み学習アーキテクチャ(PhyCRNetとPhCRyNet-s)を提案する。
論文 参考訳(メタデータ) (2021-06-26T22:22:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。