論文の概要: Automatic regularization parameter choice for tomography using a double model approach
- arxiv url: http://arxiv.org/abs/2602.08528v2
- Date: Tue, 10 Feb 2026 13:59:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-11 15:31:43.122577
- Title: Automatic regularization parameter choice for tomography using a double model approach
- Title(参考訳): 二重モデルを用いたトモグラフィの自動正規化パラメータ選択
- Authors: Chuyang Wu, Samuli Siltanen,
- Abstract要約: そこで本研究では,同じ問題の2つの異なる離散化を用いた自動パラメータ選択手法を提案する。
フィードバック制御アルゴリズムは、正規化強度を動的に調整し、2つのグリッド上の再構成に十分な類似性をもたらす最小パラメータに向けて反復的再構成を駆動する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image reconstruction in X-ray tomography is an ill-posed inverse problem, particularly with limited available data. Regularization is thus essential, but its effectiveness hinges on the choice of a regularization parameter that balances data fidelity against a priori information. We present a novel method for automatic parameter selection based on the use of two distinct computational discretizations of the same problem. A feedback control algorithm dynamically adjusts the regularization strength, driving an iterative reconstruction toward the smallest parameter that yields sufficient similarity between reconstructions on the two grids. The effectiveness of the proposed approach is demonstrated using real tomographic data.
- Abstract(参考訳): X線トモグラフィーにおける画像再構成は不適切な逆問題である。
したがって、正規化は必須であるが、その有効性は、データの忠実度と事前情報とのバランスをとる正規化パラメータの選択に依存する。
そこで本研究では,同じ問題の2つの異なる離散化を用いた自動パラメータ選択手法を提案する。
フィードバック制御アルゴリズムは、正規化強度を動的に調整し、2つのグリッド上の再構成に十分な類似性をもたらす最小パラメータに向けて反復的再構成を駆動する。
提案手法の有効性を実トモグラフィーデータを用いて実証した。
関連論文リスト
- Diffusion Models for Solving Inverse Problems via Posterior Sampling with Piecewise Guidance [52.705112811734566]
断片的なガイダンススキームを用いて,逆問題を解決するための新しい拡散型フレームワークが導入された。
提案手法は問題に依存しず,様々な逆問題に容易に適応できる。
このフレームワークは, (4時間), (8時間) の超分解能タスクに対して, (23%), (24%) および (24%) の無作為マスクを塗布する場合の (25%) の推論時間を短縮する。
論文 参考訳(メタデータ) (2025-07-22T19:35:14Z) - A Regularization-Guided Equivariant Approach for Image Restoration [46.44312175792672]
同変および不変なディープラーニングモデルは、データに固有の対称性を利用するために開発されている。
これらの手法は、しばしば限られた表現精度に悩まされ、実際には成り立たないような厳密な対称性の仮定に依存する。
本稿では,ネットワークの表現精度を保ちながら,データに対する適切な対称性制約を適応的に適用する回転同変正規化戦略を提案する。
論文 参考訳(メタデータ) (2025-05-26T10:30:26Z) - Learning Spatially Adaptive $\ell_1$-Norms Weights for Convolutional Synthesis Regularization [1.2389541192789169]
我々は、事前学習された畳み込みフィルタのファミリーを考察し、スパース特徴写像に適用された空間的に変化するパラメータを深くパラメータ化して推定する。
提案手法は,後者の手法で視覚的,定量的に比較可能な結果が得られ,同時に高い解釈が可能であることが示唆された。
論文 参考訳(メタデータ) (2025-03-12T15:38:11Z) - A Deep Unrolling Model with Hybrid Optimization Structure for Hyperspectral Image Deconvolution [50.13564338607482]
本稿では,DeepMixと呼ばれるハイパースペクトルデコンボリューション問題に対する新しい最適化フレームワークを提案する。
これは3つの異なるモジュール、すなわちデータ一貫性モジュール、手作りの正規化器の効果を強制するモジュール、および装飾モジュールで構成されている。
本研究は,他のモジュールの協調作業によって達成される進歩を維持するために設計された,文脈を考慮した認知型モジュールを提案する。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
深層ニューラルネットワークに展開する反復アルゴリズムを用いて,学習したブロックスパース最適化手法を提案する。
本稿では、正規化パラメータの選択を学ぶことができる学習ブロック反復収縮しきい値アルゴリズムを使用することの利点を示す。
論文 参考訳(メタデータ) (2020-12-07T09:27:16Z) - Learned convex regularizers for inverse problems [3.294199808987679]
本稿では,逆問題に対する正規化器として,データ適応型入力ニューラルネットワーク(ICNN)を学習することを提案する。
パラメータ空間における単調な誤差を反復で減少させる部分次アルゴリズムの存在を実証する。
提案した凸正則化器は, 逆問題に対する最先端のデータ駆動技術に対して, 少なくとも競争力があり, 時には優位であることを示す。
論文 参考訳(メタデータ) (2020-08-06T18:58:35Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。