論文の概要: ERIS: Enhancing Privacy and Communication Efficiency in Serverless Federated Learning
- arxiv url: http://arxiv.org/abs/2602.08617v1
- Date: Mon, 09 Feb 2026 13:05:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2026-02-10 20:26:25.23951
- Title: ERIS: Enhancing Privacy and Communication Efficiency in Serverless Federated Learning
- Title(参考訳): ERIS: サーバレスフェデレーション学習におけるプライバシとコミュニケーション効率の向上
- Authors: Dario Fenoglio, Pasquale Polverino, Jacopo Quizi, Martin Gjoreski, Marc Langheinrich,
- Abstract要約: ERISはサーバーのボトルネックを排除し、通信負荷を分散しながら、プライバシと精度のバランスをとるサーバレスFLフレームワークである。
理論的には、ERISは標準仮定の下でFedAvgと同じ速度で収束し、(ii)アグリゲータ数と逆向きに相互情報漏洩を束縛する。
- 参考スコア(独自算出の注目度): 6.486831630436399
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling federated learning (FL) to billion-parameter models introduces critical trade-offs between communication efficiency, model accuracy, and privacy guarantees. Existing solutions often tackle these challenges in isolation, sacrificing accuracy or relying on costly cryptographic tools. We propose ERIS, a serverless FL framework that balances privacy and accuracy while eliminating the server bottleneck and distributing the communication load. ERIS combines a model partitioning strategy, distributing aggregation across multiple client-side aggregators, with a distributed shifted gradient compression mechanism. We theoretically prove that ERIS (i) converges at the same rate as FedAvg under standard assumptions, and (ii) bounds mutual information leakage inversely with the number of aggregators, enabling strong privacy guarantees with no accuracy degradation. Experiments across image and text tasks, including large language models, confirm that ERIS achieves FedAvg-level accuracy while substantially reducing communication cost and improving robustness to membership inference and reconstruction attacks, without relying on heavy cryptography or noise injection.
- Abstract(参考訳): FL(Federated Learning)から10億パラメータモデルへのスケーリングは、通信効率、モデルの正確性、プライバシ保証の間に重要なトレードオフをもたらす。
既存のソリューションは、分離、正確性を犠牲にしたり、高価な暗号ツールに頼るなど、これらの課題に対処することが多い。
サーバのボトルネックを排除し、通信負荷を分散しながら、プライバシと精度のバランスをとるサーバレスFLフレームワークであるERISを提案する。
ERISはモデルのパーティショニング戦略を取り入れ、複数のクライアント側アグリゲータにアグリゲーションを分散させ、分散シフト勾配圧縮機構を組み込む。
理論的には、ERISは
i)標準仮定の下でFedAvgと同じ速度で収束し、
(ii) 相互情報漏洩をアグリゲータ数に逆向きに制限し、精度の劣化のない強力なプライバシー保証を可能にする。
大規模な言語モデルを含む画像およびテキストタスクにわたる実験では、ERISがFedAvgレベルの精度を達成し、通信コストを大幅に削減し、重い暗号やノイズ注入に頼ることなく、メンバシップ推論やリコンストラクション攻撃に対する堅牢性を向上させる。
関連論文リスト
- Adaptive Dual-Weighting Framework for Federated Learning via Out-of-Distribution Detection [53.45696787935487]
Federated Learning (FL)は、大規模分散サービスノード間の協調的なモデルトレーニングを可能にする。
実世界のサービス指向デプロイメントでは、異種ユーザ、デバイス、アプリケーションシナリオによって生成されたデータは本質的にIIDではない。
FLoodは、オフ・オブ・ディストリビューション(OOD)検出にインスパイアされた新しいFLフレームワークである。
論文 参考訳(メタデータ) (2026-02-01T05:54:59Z) - Stragglers Can Contribute More: Uncertainty-Aware Distillation for Asynchronous Federated Learning [61.249748418757946]
Asynchronous Federated Learning (FL)は、その効率性とスケーラビリティの向上に注目されている。
我々は,不確実性を考慮した蒸留を組み込んだ新しいフレームワークであるFedEchoを提案し,非同期FL性能を向上する。
FedEchoが既存の非同期フェデレーション学習ベースラインを一貫して上回っていることを実証する。
論文 参考訳(メタデータ) (2025-11-25T06:25:25Z) - FedSparQ: Adaptive Sparse Quantization with Error Feedback for Robust & Efficient Federated Learning [7.461859467262201]
フェデレートラーニング(FL)は、分散クライアント間の協調モデルトレーニングを可能にする。
FLは、制約されたネットワーク上での高次元モデル更新の頻繁な交換による通信オーバーヘッドに悩まされる。
本稿では,各クライアントの勾配を動的に分散する軽量圧縮フレームワークであるFedSparQを紹介する。
論文 参考訳(メタデータ) (2025-11-05T12:38:08Z) - FedP3E: Privacy-Preserving Prototype Exchange for Non-IID IoT Malware Detection in Cross-Silo Federated Learning [5.7494612007431805]
データプライバシを維持しつつ、間接的なクライアント間表現共有をサポートする新しいFLフレームワークであるFedP3Eを提案する。
我々は,N-BaIoTデータセット上のFedP3Eを,データ不均衡の程度が異なる現実的なクロスサイロシナリオ下で評価した。
論文 参考訳(メタデータ) (2025-07-09T20:07:35Z) - Defending the Edge: Representative-Attention for Mitigating Backdoor Attacks in Federated Learning [7.808916974942399]
不均一エッジデバイスは、多種多様で非独立で、同一に分散された(非IID)データを生成する。
本稿では, 悪意のあるクライアントと良識を区別するための, FeRA という, 表現力に基づく防衛機構を提案する。
本評価では,エッジデバイスに典型的な非IIDデータ分散に挑戦するなど,さまざまなFLシナリオにおけるFeRAの堅牢性を示す。
論文 参考訳(メタデータ) (2025-05-15T13:44:32Z) - Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
我々はFedE4RAG(Federated Retrieval-Augmented Generation)と呼ばれる新しいフレームワークを提案する。
FedE4RAGはクライアント側RAG検索モデルの協調トレーニングを容易にする。
モデルパラメータの保護にフェデレート学習の準同型暗号化を適用する。
論文 参考訳(メタデータ) (2025-04-27T04:26:02Z) - Byzantine-Robust Federated Learning Using Generative Adversarial Networks [1.4091801425319963]
フェデレートラーニング(FL)は、生データを共有せずに分散クライアント間で協調的なモデルトレーニングを可能にするが、その堅牢性は、データやモデル中毒といったビザンチンの行動によって脅かされている。
本稿では,クライアントの更新を検証するための代表データを生成するために,サーバ上の条件付き生成逆ネットワーク(cGAN)を活用することで,これらの課題に対処する防衛フレームワークを提案する。
このアプローチは、外部データセットへの依存を排除し、多様な攻撃戦略に適応し、標準FLにシームレスに統合する。
論文 参考訳(メタデータ) (2025-03-26T18:00:56Z) - Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - TernaryVote: Differentially Private, Communication Efficient, and
Byzantine Resilient Distributed Optimization on Heterogeneous Data [50.797729676285876]
本稿では, 3次圧縮機と多数決機構を組み合わせて, 差分プライバシー, 勾配圧縮, ビザンチンレジリエンスを同時に実現するternaryVoteを提案する。
提案アルゴリズムのF差分プライバシー(DP)とビザンチンレジリエンスのレンズによるプライバシー保証を理論的に定量化する。
論文 参考訳(メタデータ) (2024-02-16T16:41:14Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
我々は、複数のユーザ/エージェントからエッジサーバへの勾配更新をOtA(Over-the-Air)で送信することで、無線フェデレーション学習のプライバシー面を考察する。
従来の摂動に基づく手法は、トレーニングの精度を犠牲にしてプライバシー保護を提供する。
本研究では,エッジサーバにおけるプライバシリークの最小化とモデル精度の低下を目標とする。
論文 参考訳(メタデータ) (2022-10-05T13:13:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。